
Evaluation of Network Coding Techniques for a

Sniper Detection Application

Lorenzo Keller Abdulkadir Karaagac Christina Fragouli Katerina Argyraki

{lorenzo.keller,abdulkadir.karaagac,christina.fragouli,katerina.argyraki}@epfl.ch

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract—This paper experimentally studies the reliability and
delay of flooding based multicast protocols for a sniper detection
application. In particular using an emulator it studies under
which conditions protocols based on network coding deliver
performance improvements compared to classic flooding. It then
presents an implementation of such protocols on mobile phones.

I. INTRODUCTION

In this paper we study the performance gains of network

coding when applied to multicast for a particular application:

sniper detection.

In this application mobile sensors, carried by soldiers,

measure the time at which they hear a shot and exchange

these measurements. Thanks to signal processing techniques

[12] the nodes can then infer the position of the shooter.

We focus on the communication aspect of the system.

Communication happens over wireless and therefore is limited

in range and subject to noise. Moreover when nodes transmit

at the same time their communication can collide and in this

case packets are potentially lost.

A key characteristic of our setup when compared to other

studies on multicast for mobile ad-hoc networks is that, instead

of having at a given time one source and a set of receivers,

all nodes are both generating and receiving traffic at the same

time.

In our application two performance criteria are important:

reliability and delay of data exchange. Every node must receive

within a small amount of time the measurements of at least a

subset of the other nodes.

In this paper we perform an experimental evaluation of

already proposed coding approaches. Our contribution is to

assess the impact of these schemes on delay and reliability. We

also study how different parameters such as transmission rate,

network topology and computing power of the nodes influence

delay and reliability of these protocols.

The questions we try to answer is whether coding can

improve delay and reliability regardless of the particular

network parameters. In the rest of the paper we will show

that coding indeed significantly increases reliability and under

some conditions also reduces delay.

The paper is organized as follows: in Section II we discuss

relevant work in existing literature, in Section III we describe

This work was funded by ArmaSuisse Wissenschaft + Technologie (W+T),
Project no. 8003413832.

our setup and in Section IV we introduce the coding schemes

under study. In Section V we present the results of our tests

and in Section VI we conclude.

II. RELATED WORK

In the past decades many multicast protocols for mobile ad-

hoc wireless networks have been proposed [2], [13]. The main

challenge in this setup are the frequent changes in the network

topology that require suitable protocols.

The solutions that have been proposed can be classified

in three categories: efficient tree construction protocols (e.g.

MAODV [11]), mesh based protocols (e.g. ODMRP [7]) and

flooding based protocols (e.g. SMF [9]). The first approach

tries to quickly adapt a multicast tree to network topology

changes, in the second approach nodes do not simply build a

tree but instead build a mesh and therefore link failures can

be better tolerated. In the third approach, flooding, each node

that receives a multicast message retransmits it. To improve

the rate of flooding and reduce network contention protocols

can leverage knowledge of their neighborhood to reduce the

number of transmitted packets (e.g. E-CDS [10], S-MPR [1]

or probabilistic flooding [13]).

In this paper we don’t propose a new approach to multicast:

instead we propose coding schemes to be used in conjunction

with flooding. We work with flooding because this approach

doesn’t require to proactively maintain information about the

network. In our setup this would be extremely costly in terms

of energy since events are rare. For the same reason we will

also not use any rate reduction technique.

The performance of network coding when used in conjunc-

tion to multicast has been studied in other papers. Most of

them look at the problem of a single source transmitting to

many receivers. Some papers study our setup but either use

rate as performance metric [8], [6] or study rate delay trade-

offs from a theoretical point of view [14].

III. PROBLEM SETUP

We now proceed to formalize our setup. A set of N (mobile)

sensor nodes σ1, ..., σN distributed in a given area have to

exchange their observation o1, ..., oN ∈ A about an event that

happens at time t = 0. Sensors σi is ready to communicate

its observation of the event to the other sensors at a time ti
that can depend on the distance of the sensor from the event

and the time necessary for processing the raw sensed data.

Data is exchanged by the nodes via packet based radio

communications; the sensors run a communication protocol

that defines when and what to transmit. The radio supports

communication at a certain data rate R. We don’t assume that

nodes have directional antennas and or that they know their

relative positions.

In our study we assume that the radios are using carrier

sense multiple access (CSMA) with back-off to decide when

to transmit as specified in the 802.11 standard. Therefore

each node before sending checks if another station is already

transmitting. If so it backs-off its transmission until the channel

becomes free. When the channel is free the node performs

an additional random back-off to avoid collisions with other

nodes that were also waiting to send.

We assume that node movement is such that during the

data dissemination for an event nodes can be considered static

while from one event to the next the network topology is

likely to have completely changed. This assumption models

many situations in which the timescale at which events happen

(minutes or hours) is much larger than the timescale at which

data is exchanged (milliseconds or seconds).

We study the performance of different protocols in respect

of two quality metrics: delay and reliability. Delay measures

the average time at which every node receives the first,

second, etc. observation from its peers. Reliability measures

the average probability for a given node to receive 1, 2, etc.

observations from its peers.

IV. DESCRIPTION OF PROTOCOLS

In this section we describe four coding schemes for flood-

ing, one of them is purely theoretical and will be used to

give bounds on the performance of any other protocol while

four of them are practical and can be used to perform data

dissemination in a real network. In Section V we will analyze

their performance in different setups.

A. Classic flooding

In classic flooding source σi transmits its observation by

simply sending a packet (i, oi). Every node that receives the

packet checks if it has already received oi in another packet.

If not it retransmits the packet. All the recipients of this new

message repeat the same procedure. At some point all sent

packets will be received by nodes that have already seen oi

and therefore forwarding will stop.

In this protocol every observation is potentially retransmit-

ted N times. If there is collisions or poor radio conditions

however, some observations may never be received by some

nodes and therefore it is possible that they are retransmitted

less than N times. In particular if the first transmission of an

observation is lost then nobody will ever retransmit it.

B. Aggregation flooding

In classic flooding any given packet contains exactly one

observation and therefore some packet transmissions are use-

less for some nodes. In particular if a node is only missing

the observation of a specific source all the packets containing

any other observation are useless.

In aggregation flooding every node transmits all observa-

tions it has heard up to now in every packet it sends, and not

only the new observation that triggered the packet transmis-

sion. This means that the “usefulness” for the recipients of the

packets is increased.

Implementing such a protocol is not always possible. Pack-

ets containing multiple observations grow in size and the more

sources are present, the larger the packets will be. When the

packet size exceeds the maximal packet size allowed by the

link layer in use it will not be possible to send them.

In our comparison we will therefore assume that there

exists an ideal algorithm that is able to compress the size

of packet containing multiple observations to the size of

packet containing only one observation. We will implement the

protocol by just sending the source identifiers in the packets.

The performance of this hypothetical protocol will give us

a bound to any flooding based protocol.

C. Random network coding

In this protocol, based on the ideas proposed in [3], every

packet p instead of containing a source identifier and the

corresponding observation it contains a coding vector hp , a

vector of length N over the finite field Fq, and a payload dp,

a vector over the same finite field of length K = ⌈logq(|A|)⌉.
Each source σi maps its observation oi to a vector xi ∈ F

K
q

and creates a coding vector ci ∈ F
N
q where (ci)j = 0 if j 6= i

and 1 otherwise. It then sends the two in a packet as (ci, xi).
Upon reception of a packet p = (hp, dp) every node checks

if the received coding vector hp is linearly independent from

the coding vectors previously received. If so if creates a

random linear combination of the packets received up to now

and send it. The packet sent will have therefore the form :
(

∑

i

αi · hi,
∑

αi · di

)

for some randomly chosen αi. It is easy to see that all sent

packets can be equivalently expressed as:

(

N
∑

i=1

βi · ci,

N
∑

i=1

βi · di

)

By appropriately combining received packets the nodes can

reconstruct the original x1, ..., xN . In particular they can do

so by performing Gaussian elimination on the matrix:







hp1
dp1

...
...

hpm
dpm






.

Notice that in this protocol a packet can potentially be used

to recover different sources. In this sense it is therefore similar

to aggregation. However a big difference is that to decode a

packet which is a linear combination of k sources the receiver

may need to first receive up to k packets. In aggregation on

the contrary packets can be decoded individually.

D. Opportunistic coding

This protocol, based on ideas proposed in [5], is similar to

random network coding but nodes instead of randomly picking

the coefficients they carefully choose them in a way that allows

all the receivers to decode the received packets immediately.

This is done by ensuring that if a packet is a linear combination

of M observations then every node that receives it already

knows at least M − 1 of the contained observations.

In order to be able to build the packets each node maintains

a list of neighbors and for every neighbor a list of observations

that the neighbor linearly combined in its packets up to now.

We know that since every packet has been sent such that the

neighbors could decode it, every neighbor can only linearly

combine observations that it has already decoded and therefore

this list can only contain observations already decoded by the

neighbor.

As in random network coding a packet can be useful to

more receivers than in classic coding. Opportunistic coding

also solves the problem of having packets that need to wait

to be decoded. However depending on the structure of the

network the number of coding opportunities can be very small.

In those situations opportunistic coding behaves exactly like

classic flooding.

Critical for this protocol is the knowledge of the neighbor-

hood of each node. Proactively maintaining this knowledge is

too expensive in our application. Our implementation therefore

collects this information passively during the packet dissemi-

nation. Each node at the beginning of the dissemination has an

empty neighbor table and doesn’t perform any coding. Every

time it hears a packet it adds the transmitting node to his table

and start coding its packets. Neighbor table entries expire after

some time of inactivity of the neighbor. This can lead to errors

in the construction of packets but we observe that they are

quite rare.

E. Limited coding

This protocol is an hybrid between opportunistic and ran-

dom network coding. In this case as in opportunistic coding

only packets that have already been decoded are linearly

combined in transmitted packets. The difference is that this

protocol takes no precautions to make sure that the neighbors

can decode the packets immediately. This protocol has the

advantage compared to random network coding that it sends

linear combination that are potentially easier to decode since

every packet contains at most one additional source compared

to what was sent up to now by the node and therefore it

can potentially reduce the delay. The main drawback of this

protocol is that a new packet is forwarded by a given node

only when a new observation is decoded. This means that

when a node cannot decode most of its received packets, it

will forward very little information and therefore negatively

impact the network performance.

V. EXPERIMENTAL RESULTS

In this section we present the performance measurements

for the protocols described in Section IV under different con-

ditions and we explain their performance. In our experiments

we vary the connectivity of nodes, their processing power and

the transmission rate.

We test the different protocols in the networks described

in Figure 1: two one-hop networks (a and e), a two-hops

network, a network with a bottleneck and a N -hops network.

In the one-hop networks all nodes are within the reception

range of all the others. In the two-hop network, every node

can communicate to every other node by relaying through at

most one other node. In the bottleneck topology every node

can reach every other node through at most 3 hops, the network

is however fully connected only thanks to two nodes that form

a bottleneck. Finally in the N -hop network nodes are arranged

in a line and can communicate only with their immediate

neighbors.

The test consists in running multiple times the data dissemi-

nation. We assume the nodes are measuring the time of arrival

of a sound produced periodically at a fixed position. Every

node σi knows the times at which the sound is emitted and it

knows its distance from the source, it can therefore compute

the time ti at which it can generate its observation. The

observation is then disseminated accordingly to the protocol

in use.

To measure the performance we first measure for every

round and node the arrival time of each packet from the

moment in which the event happened. To compute the average

delay we individually average the arrival time of the first,

second, etc. packet over all rounds and nodes. To compute

the reliability we compute the percentage of rounds every

node received one, two, etc. packets and then we compute

the average over all nodes.

We perform the test using an emulated and a real testbed.

We use the emulated environment to test the performance of

the protocols at a rate R = 16 kbps. This rate is typical

for tactical radios and in sensor networks. We also run the

protocols in a real testbed composed by 6 HTC WildFire

cellphones running Android 2.1 and forming a 802.11b ad-

hoc network. This allows us to test the protocols under real

network conditions and gives an idea of the applicability of

the conclusions found for tactical radios to radio technologies

in widespread use. This also allows us to test the protocols

with limited computational resources.

The tests in the emulated environment are done using

eMANE [4]. This emulator creates on a normal Linux com-

puter a virtual interface for each emulated node and runs

in real time MAC and PHY layer as if the interfaces were

real network cards. We used the 802.11 radio model provided

with the emulator. We changed the code to support the (non-

standard) transmission rate of 16 kbps. We also enabled the

use of Wireless Multimedia Extensions (802.11e) in order

to increase contention widows sizes and therefore reduce

the amount of packets that get lost due to collisions. To

configure link gains between nodes we used a Log-distance

path-loss model. We also used the SNIR to BER curves

provided with the emulator for 1 Mbps communications with

802.11b radios. The protocols are implemented in Java and

packet transmissions at the sources are triggered by the system

clock which is shared among all nodes. The processor of the

computer running the tests is an 3Ghz Intel Xeon.

In the real testbed we use the same Java code used in the

emulation tests packaged as an Android application. In order

to be able to set the phone radios in ad-hoc mode we had to

modify the phone firmware. Synchronized triggering of packet

generation on the phones is more tricky to achieve than in the

emulated testbed. Phones need to be synchronized. To do so

they are running a custom time synchronization protocol that

synchronizes them within approximately 5 ms.

The protocols are implemented on top of UDP. To be able

to receive the packets at multiple receivers we send them to

an IP multicast group to which all the nodes are registered.

This implies that packets are sent as link layer broadcasts

and therefore are not acknowledged as it usually happens on

802.11 data frames.

To implement limited and random network coding we use

operation over F24 in the emulator and F28 in the phones.

Each entry of payload and coding vectors requires half (re-

spectively one) byte to be transmitted. Finite field operations

are implemented using table lookups, addition and subtraction

when using F28 are implemented directly with xor operations.

The finite field is chosen using three criteria: it should be

sufficiently large to ensure correct operation, as small as

possible to reduce coding headers overhead and should allow

fast computations. For our phone implementation in particular

we noticed that using one byte per field element is the best

trade-off between these three criteria. On the emulator we used

a smaller field size since the cost of manipulating vectors over

F24 is not so expensive as on cellphones and we have smaller

headers.

To implement opportunistic coding we use operations over

F2. Each entry of the coding vectors requires therefore 1

bit to be transmitted. We choose which observations to code

iteratively by selecting one by one the one that will be useful

to the largest number of neighbors and that will not cause

them not to decode. If due to errors in the neighbor tables a

node receives a packet it cannot decode it will discard it. We

decided to use this approach after verifying that such packets

are very rare.

A. Emulated network

In this section we discuss the performance of different

coding schemes when the data rate is small. This is the case

in sensor networks and tactical radios. We also discuss which

conclusions are also valid for higher data rates.

The observation sent by the nodes has length 51 bytes.

Coding vectors have length 4 bytes in random network coding

and 1 byte in opportunistic coding. Identifiers in classic

flooding have length 1 byte. The coding schemes, in addition

to 802.11, IP and UDP headers have 4 additional bytes that

store a sequence number that would be used in case of

concurrent dissemination of observation about multiple events.

Sequence numbers are loosely synchronized by changing the

(a) 1-hop topology (b) 2-hop topology

(c) N -hop topology (d) Bottleneck topology

(e) Real deployment

Fig. 1. Diagram of the deployments used for testing. Circles are nodes,
the square is the sound source. The gray area around the highlighted node
indicates the connectivity.

1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e
 e

la
p

s
e

d
 s

in
c
e

 s
h

o
t

(m
s
)

Message #

Classic flooding

Random coding

Limited coding

Opportunistic coding

Aggregation

No Flooding

Fig. 2. Average delay in an emulated 1-hop network (R = 16 kbps, N = 8)

local sequence number in case a packet with a larger sequence

number is received.

In this section we present results where we run each protocol

for 70 events.

a) 1-hop network: Figures 2 and 3 illustrate the per-

formance of the different protocols discussed in Section IV.

In addition to those protocols the figures also illustrate the

performance when not using any form of flooding.

First observe the performance when no flooding is per-

formed. We can see that the delay is much lower than all

the other protocols. This due to two factors. First less packets

are sent and therefore less contention happens on the wireless

medium. The second reason is due to the fact that less packets

are received and therefore the average delay is computed

only on “fast” packets. This is an important behavior of the

performance metric we use that should always be considered

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Message #

%
 o

f
ro

u
n

d
s
 w

h
e

re
 n

−
th

 m
e
s
s
a

g
e

 i
s
 r

e
c
e
iv

e
d

Classic flooding

Random coding

Limited coding

Opportunistic coding

Aggregation

No Flooding

Fig. 3. Reliability in an emulated 1-hop network (R = 16 kbps, N = 8)

when studying the graphs presented in this paper.

We see that classic flooding has the largest delay. It is

interesting to observe that opportunistic coding performs better

than classic flooding both in delay and reliability. In this setup

packets are lost only if there is a collision, and when a collision

occur nobody will receive the packet. This means that each

node can have at most one observation not received by all

other nodes and this observation is its own. It will be able to

code it only when it is forwarding an observation that it knows

everybody else has already received. Since this happens rarely

we would expect the performance of opportunistic coding

to be approximately the same as classic flooding. In our

implementation however neighbor tables are not correct at

the beginning of the dissemination and therefore some more

coding opportunities arise. We ran the same tests with static

neighbor tables and we observed that in that case opportunistic

coding and classic flooding perform approximately the same.

In this setup coding performs particularly well. Its delay

is near what is experienced by aggregation and its reliability

is also high. The high reliability is easily explained by the

fact that every node in this setup receives a large amount of

packets, much bigger than N . Therefore it is likely that every

node can decode all the source packets. In particular coding

protects from the problem experienced by classic flooding

when the first transmission of an observation is lost: nobody

will ever receive it because nobody will transmit it again. In

coding every packet sent by a source contains information

about its own observation and therefore it’s much less likely

that this will be lost.

Coding has also a surprisingly good delay performance.

One would expect that coding across packets would introduce

some delay. In this setup however the packets sent are easy

to decode. Indeed since every packet is either received by

everybody or by nobody (in case of collision) every node has

at most one observation unknown to other nodes, namely its

own observation. Packets are therefore always decodable by

all recipients.

In this topology limited coding doesn’t significantly differ

from full coding. We will show that in other topologies it

1 2 3 4 5 6 7
200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e
 e

la
p

s
e

d
 s

in
c
e

 s
h

o
t

(m
s
)

Message #

Classic flooding

Random coding

Limited coding

Opportunistic coding

Aggregation

Fig. 4. Average delay in an emulated 2-hops network (R = 16 kbps, N = 8)

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Message #

%
 o

f
ro

u
n

d
s
 w

h
e

re
 n

−
th

 m
e

s
s
a

g
e

 i
s
 r

e
c
e

iv
e

d

Classic flooding

Random coding

Limited coding

Opportunistic coding

Aggregation

Fig. 5. Reliability in an emulated 2-hops network (R = 16 kbps, N = 8)

instead improves performance.

We ran the same experiment at a higher data rate (1 Mbps).

When using the same packet size we observed that almost

no packet losses are experienced because almost no collisions

occur. Delays are also very similar since all nodes receive

the first communication. When we increased the packet size

to 1000 byte we could observe a behavior similar to what

happens at 16 kbps.

b) 2-hops network: Figure 4 and 5 show the performance

of the protocols in a network with diameter 2. In this setup

no protocol can approximate the performance of ideal aggre-

gation. All other protocols have the same performance for the

first three packets, which are from nodes in their immediate

neighborhood. For later observations coding has a higher delay

than the other protocols. This can be explained by the fact that

in this topology packets are not always lost by all nodes in

every case of collision and therefore packets cannot always

be decoded immediately as it was happening in the previous

scenario.

Regarding reliability we see that coding still performs as

well as aggregation, while the performance of classic flooding

and opportunistic coding decreases. This is due to the fact

that some observations must be successfully transmitted twice

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Message #

%
 o

f
ro

u
n

d
s
 w

h
e

re
 n

−
th

 m
e
s
s
a

g
e

 i
s
 r

e
c
e
iv

e
d

Classic flooding

Random coding

Limited coding

Opportunistic coding

Aggregation

Fig. 6. Reliability in an emulated N -hops network (R = 16 kbps, N = 8)

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Message #

%
 o

f
ro

u
n

d
s
 w

h
e

re
 n

−
th

 m
e

s
s
a

g
e

 i
s
 r

e
c
e

iv
e

d

Classic flooding

Random coding

Limited coding

Opportunistic coding

Aggregation

Fig. 7. Reliability in an emulated bottleneck network (R = 16 kbps, N = 8)

before being received by a given node. Opportunistic coding

performs better than classic flooding only because at the start

of the dissemination neighbor tables are empty. We tested the

same protocol with static neighbor tables and the performance

of opportunistic coding is the same as classic flooding. The

large number of neighbor of each node reduces the number of

coding opportunities.

In this network limited coding helps, we can see that its

reliability is similar to full coding while its delay is comparable

to classic flooding.

Our tests at 1 Mbps with packets of length 1000 bytes show

a similar reliability of protocols. Delay of classic flooding and

the coded protocols are approximately the same.

c) Bottleneck network and N -hop network: Figure 6 and

7 show the reliability of the different protocols in a network

with a bottleneck and in a line network. We can see that

in these setups fixed rate protocols discussed in this paper

are not adequate. Indeed none of them can ensure a proper

dissemination of the data throughout the network. The main

reason of these losses is that transmissions are often lost due

to the hidden terminal effect. Since the protocols use broadcast

communications RTS/CTS cannot be used to mitigate the

problem. Notice also that neither end to end retransmission

1 2 3 4 5
100

120

140

160

180

200

220

T
im

e
 e

la
p

s
e
d

 s
in

c
e
 s

h
o

t
(m

s
)

Message #

Random coding

Opportunistic coding

Classic flooding

Aggregation

Fig. 8. Average delay in the network composed by six colocated phones
(R = 1 Mbps, N = 6)

1 2 3 4 5
50

55

60

65

70

75

80

85

90

95

100

Message #

%
 o

f
ro

u
n

d
s
 w

h
e

re
 n

−
th

 m
e

s
s
a

g
e

 i
s
 r

e
c
e

iv
e

d

Random coding

Opportunistic coding

Classic flooding

Aggregation

Fig. 9. Reliability in the network composed by six colocated phones (R = 1

Mbps, N = 6)

nor FEC here would be sufficient to increase reliability. Since

the probability of receiving some of the packets is so low,

end to end erasure protection will require an extremely large

amount of resources. A much better approach is to perform

retransmissions at every node.

The advantage of opportunistic coding compared to classic

flooding in the N -hop topology disappears when we increase

the rate and packet length. This is due to the fact that timing of

packet arrivals is critical to the performance of the protocols.

At 1 Mbps classic flooding performs similarly to opportunistic

flooding (therefore outperforming random coding).

For the bottleneck topology when we performed experi-

ments at 1 Mbps and packets of length 1000 bytes we observed

a behavior similar to what happens at 16 kbps.

B. 1-hop Network of Cellphones

In this setup we test the performance of the different

protocols when they are running on cellphones.

There are mainly two differences with the previous section:

different rate and different computing power. Phones are trans-

mitting at 1 Mbps and their CPU is a Qualcomm MSM7225

at 528 MHz, much slower than the Xeon processor used in

the emulation.

In this setup decoding and encoding overhead must be care-

fully handled. We had to optimize the decoding and encoding

process used in the protocols to make sure that delay due

to them doesn’t dominate packet deliver delay. For example

we had to reduce at minimum the memory allocations during

the coding and decoding process to avoid garbage collection

to happen too frequently. Additionally we perform as many

operations as possible in place on the received vectors. Finally

we also avoid table lookups for additions and multiplication.

At 1 Mbps, dissemination of an observation can be over

before the next observation is inserted in the network. Indeed

to observe a significant number of collisions we had to increase

the observation length to 1000 bytes. Notice that since 802.11

mandates a number slots in the contention window that doesn’t

depend on the rate, collisions have the same likelihood at 1

Mbps as at 16 kbps provided that there is more than one node

waiting to send.

Figure 8 and 9 show the performance of the protocols in this

setup. Notice that for aggregation, in this setup, only packets

identifiers are sent therefore the packet length is much smaller

than any other protocol.

We see that again coding is a good choice to guarantee high

reliability. We can also observe that coding and decoding delay

do not impact the performance of the coded protocols.

VI. CONCLUSION

In this paper we empirically studied the performance of

different coding schemes for data dissemination. We showed

that they can both reduce delay and improve reliability both

through simulations and by running the protocols on low-end

smart-phones.

Coding can reduce delay in networks where each node is

within the range of the all other nodes. In topologies where the

hidden terminal problem is present coding loses its advantage

but the appropriate coding strategy has a delay comparable to

classic flooding.

Coding also improves significantly reliability when nodes

are sufficiently well connected. In situations where classic

flooding for more than 50% of the rounds doesn’t deliver 40%

of the packets coded flooding can achieve more than 99%

reliability for all packets.

REFERENCES

[1] T. Clausen and P. Jacquet. Optimized link state routing protocol. RFC
3626. Technical report, 2003.

[2] C. de Morais Cordeiro, H. Gossain, and D.P. Agrawal. Multicast over
wireless mobile ad hoc networks: present and future directions. Network,
IEEE, 17(1):52 – 59, 2003.

[3] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong. A random linear network coding approach to multicast. IEEE
Transactions on Information Theory, 52(10):4413–4430, 2006.

[4] N. Ivanic, B. Rivera, and B. Adamson. Mobile ad hoc network emu-
lation environment. In IEEE Conference on Military Communications

(MILCOM), 2009.

[5] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft.
Xors in the air: Practical wireless network coding. In ACM SIGCOMM,
2006.

[6] T. Kunz and L. Li. Broadcasting in multihop mobile tactical networks:
to network code or not. In International Wireless Communications and

Mobile Computing Conference (IWCMC), 2010.
[7] Sung-Ju Lee, M. Gerla, and Ching-Chuan Chiang. On-demand multicast

routing protocol. In IEEE Wireless Communications and Networking

Conference (WCNC), 1999.
[8] Weifa Liang, R. Brent, Yinlong Xu, and Qingshan Wang. Minimum-

energy all-to-all multicasting in wireless ad hoc networks. Wireless

Communications, IEEE Transactions on, 8(11):5490 –5499, 2009.
[9] J.P. Macker, J. Dean, and W. Chao. Simplified multicast forwarding in

mobile ad hoc networks. In IEEE Conference on Military Communica-

tions (MILCOM), 2004.
[10] R. Ogier. MANET extension of OSPF using CDS flooding. In

Proceedings of the 62nd IETF, 2005.
[11] E. Royer and C. Perkins. Multicast operation of the ad-hoc on-demand

distance vector routing protocol. In ACM International Conference on

Mobile Computing and Networking (MobiCom), 1999.
[12] G. Simon, M. Maróti, Á. Lédeczi, G. Balogh, B. Kusy, A. Nádas,

G. Pap, J. Sallai, and K. Frampton. Sensor network-based countersniper
system. In ACM International Conference on Embedded networked

Sensor Systems (SenSys), 2004.
[13] B. Williams and T. Camp. Comparison of broadcasting techniques for

mobile ad hoc networks. In ACM International Symposium on Mobile

Ad-Hoc Networking and Computing (MobiHoc), 2002.
[14] Chi Zhang, Yuguang Fang, and Xiaoyan Zhu. Throughput-delay trade-

offs in large-scale manets with network coding. In INFOCOM 2009,

IEEE, 2009.

