
Multipath Diversity and Robustness
for Sensor Networks

Christina Fragouli, Katerina Argyraki, and Lorenzo Keller

Abstract Balancing energy efficiency and reliability is a common underlying goal
for most information collection protocols in sensor networks. Multipath diversity
has emerged as one of the promising techniques to achieve such a balance. In this
chapter, we provide a unified framework for the multipath techniques in the lit-
erature and discuss their basic benefits and drawbacks. We also discuss emerging
techniques from the area of network coding.

1 Introduction

The goal of a sensor network is to gather information and communicate it to a col-
lecting entity: sensors typically measure a physical quantity (e.g., temperature) and
communicate their measurements (or functions of their measurements, e.g., sums
or averages) to a common sink. For most applications, sensors communicate to the
sink over a wireless channel, while the sink is connected to a wired network. In this
chapter, we focus on the problem of designing a collection protocol, i.e., a protocol
that conveys information from the sensors to the sink.

A typical requirement for such protocols is energy efficiency: sensors are typi-
cally powered through small, easily depletable batteries; moreover, they are often
installed at inaccessible areas (e.g., forests or mountain slopes), making battery
changing practically infeasible. Hence, a collection protocol must be “energy effi-
cient,” i.e., consume the minimum amount of energy necessary to meet the perfor-
mance standards of the corresponding application. The main source of energy con-
sumption in a sensor is the radio, i.e., transmitting data and listening for/receiving
incoming data (a per-component breakdown of energy consumption for different
sensor platforms can be found in [1]). Hence, one approach to designing energy-
efficient collection protocols is to minimize the number of transmissions necessary

C. Fragouli (B)
School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland
e-mail: christina.fragouli@epfl.ch

G. Ferrari (ed.), Sensor Networks, Signals and Communication Technology,
DOI 10.1007/978-3-642-01341-6 5, C© Springer-Verlag Berlin Heidelberg 2010

75

76 C. Fragouli et al.

to convey the required information to the sink. Another, complementary approach
is to enable sensors to predict for which periods they are unlikely to receive data
and turn their radios off during those periods (a collection protocol that uses this
approach is described in [2]).

Energy efficiency is at odds with another typical requirement for collection proto-
cols: reliability in the face of channel and node failures. Compared to wired, wireless
channels are relatively unreliable, subject to fading and random fluctuations. This is
especially so in sensor networks where the environment can change unpredictably
and the sensors themselves can fail (e.g., a landslide can destroy part of a sensor
network monitoring forest conditions). To achieve reliable collection in the face of
such failures, a collection protocol must generate a certain amount of redundant
information – which unavoidably increases both the number of transmissions and
the amount of time for which sensors must keep their radios on.

In this chapter, we describe existing as well as emerging collection protocols
that balance the competing goals of energy efficiency and reliability.1 We restrict
our attention to the simplest scenario, where the goal is to communicate sensor
measurements to the sink,2 while sensors never turn off their radios. The point of
the chapter is to give a flavor of the problems encountered in sensor-network design
and outline the different classes of solutions – we far from cover all work done
in the area. We start by defining a collection protocol and its associated cost in
Sect. 2. Section 3 examines the use of single-path protocols, while Sect. 4 focuses
on multipath protocols. Section 5 reviews basic ideas in the area of network coding,
while Sect. 6 outlines an approach for deploying network coding in sensor networks.
Finally, Sect. 7 concludes this chapter.

2 What is a Collection Protocol?

A fundamental characteristic of wireless communication is that transmissions are
broadcast and can be overheard by multiple nodes in the transmitter’s vicinity, albeit
at different signal levels. For example, in Fig. 1, a transmission by node a11 is over-
heard by nodes a10, a9 and a8 at different signal levels; we say that a10, a9 and a8

are in a11’s range or, equivalently, that they are a11’s “neighbors.” As a result, there
can be multiple paths between each pair of nodes – Fig. 2 depicts all possible paths
between nodes in our example network. A collection protocol essentially determines
which of these paths to use and how, in order to convey information from the sensors
to the sink.

1 Certain applications can have additional/different requirements, e.g., in a sensor network moni-
toring for atmosphere poisoning, alarms must to be delivered with minimum latency.
2 We do not consider the scenario where the goal is to communicate functions of sensor measure-
ments, like sums or averages, to the sink.

Multipath Diversity and Robustness for Sensor Networks 77

Fig. 1 Wireless
transmissions are broadcast.
There may be several nodes
within the broadcasting range
of every sensor node

Sink

a1

a2

a3

a4

a5

a6

a7
a8

a9

a11

a10

Fig. 2 Representation of the
potential connections
between neighboring nodes

a1

a2

a3

a4

a5

a6

a7

a8

a9

a11

a10

Sink

More specifically, a collection protocol can be decomposed into the following
tasks:

1. Acquisition of channel information. Each node learns its neighbors and estimates
the channel quality between itself and each neighbor.

2. Topology construction. Each node builds a routing table that includes a subset
of its neighbors; e.g., when the constructed topology is a tree, each node has a
single next hop to the sink.

3. Topology usage. Each node determines how to route information through the
constructed topology – that is, what exactly to send, how often, and to which
neighbors.

2.1 Path Cost and Channel Quality

Recall that we are interested in balancing reliability and energy efficiency. As men-
tioned in Sect. 1, there are two approaches to reducing energy consumption: reduce
transmissions and reduce the amount of time for which sensors keep their radios on.
Since we are considering a simple scenario where sensors cannot do the latter, in our
context, optimizing for energy efficiency means minimizing transmissions. Hence,
we define the cost of communication as a function of the number of transmissions
required to successfully transfer a certain amount of information between two nodes.
More specifically:

Definition 1 We define the cost of communication from a node a to a neighbor b
as the average number of transmissions that are necessary to successfully transmit a
packet of length L from a to b.

78 C. Fragouli et al.

Sink

a8

a9

a11

a10

1
2 2 2

32

4

31

4

2
3

4

1

5

3

6

3

4

2
1

4

2

Fig. 3 A graph with vertices corresponding to sensor nodes and edges between any two nodes
that are within the transmission range of one another. Each edge has a weight proportional to the
number of retransmissions required to reliably transmit information between the nodes it connects

Suppose we know the communication cost between every pair of neighbors in
our network at a given point in time. We can depict this information with a channel-
quality graph, where each vertex represents a sensor and each edge represents a
communication channel between two neighbors; each edge has a weight propor-
tional to the corresponding cost. For example, the graph shown in Fig. 3 says that, if
node a11 broadcasts once, only node a8 is expected to successfully receive the trans-
mitted packet; if it broadcasts twice, nodes a8 and a9 are expected to successfully
receive the packet; if it broadcasts 4 times, all neighbors are expected to successfully
receive the packet.

Definition 2 Given a channel-quality graph, we define the cost of a path as the sum
of the costs of all the edges that make up the path. A minimum-cost path from a
node a to the sink is a path whose cost is less or equal to the cost of any other path
from node a to the sink.

3 Routing on a Tree

A straightforward approach is to connect all sensors to the sink over a tree: (i) Con-
struct a unique, minimum-cost path from each sensor to the sink (such a path is
shown in Fig. 4), such that the union of all constructed paths forms a spanning tree

Fig. 4 A minimum-cost path
from node a11 to the sink.
This is also the minimum-
cost path for nodes a8, a5, a3

to the sink

Sink

a1

a2

a3

a4

a5

a6

a7

a8

a9

a11

a10

1
2 2 2

32

4

31

4

2
3

4

1

5

3

6

3

4

2
1

4

2

Multipath Diversity and Robustness for Sensor Networks 79

Fig. 5 A tree constructed
from the union of the
minimum-cost paths from the
sensors to the sink

Sink

a1

a2

a3

a4

a5

a6

a7

a8

a9

a11

a10

1
2 2 2

32

4

31

4

2
3

4

1

5

3

6

3

4

2
1

4

2

rooted at the sink (such a tree is shown in Fig. 5).3 (ii) Route each message from
sensor a to the sink along the unique path from a to the sink over the tree.

The Collection Tree Protocol (CTP) [3] implements this approach. Task #1
(acquisition of channel information) is accomplished in a setup phase, where each
node sends out a sequence of numbered beacons that bear its identity; each node
processes the beacons it hears and determines its neighbors; for each neighbor,
it counts how many of its beacons it received, estimates the communication cost
from that neighbor to itself, and sends this information to the neighbor; beacons are
sent with an exponentially increasing interval, which is reset to a small value when
certain routing conditions are met. Task #2 (topology construction) is accomplished
in a distributed manner over multiple rounds: in each round, each node broadcasts
its “distance” to the sink, i.e., the cost of the minimum-cost path from itself to the
sink; moreover, each node processes its neighbors’ advertisements, identifies the
neighbor with the lowest distance to the sink, and chooses it as its “next hop.” For
example, in Fig. 5, in the first round, nodes a1, a2 and a3 identify the sink as their
neighbor; in the second round, nodes a2, a4 and a5 identify node a3 as their neighbor
with the lowest distance to the sink and choose it as their next hop. Finally, task #3
(topology usage) consists of each node transmitting every message it receives to its
next hop. For example, in Fig. 5, a message from node a11 is routed through nodes
a8, a5 and a3.

Routing on a tree faces certain practical challenges:

1. Changing network conditions. The tree can break as a result of a node or chan-
nel deterioration between two neighbors; moreover, due to channel fluctuations,
what used to be an optimal tree may end up using bad-quality paths. To decrease
the amount of loss or delay that can result from such events, it is possible to
repeat tasks 1 and 2, i.e., monitor channel quality and adapt the tree accordingly
(CTP follows this approach). However, it is not possible to adapt to all failures:
suppose that node a11 in Fig. 5 sends a packet to the sink through the constructed

3 We should clarify that a spanning tree constructed in this manner (i.e., the union of the minimum-
cost paths connecting each sensor to the sink) is not necessarily a “minimum-cost spanning tree” as
typically defined in graph theory, where the cost of a tree is equal to the sum of the costs of all links
that take part in the tree. For example, the tree in Fig. 5, which has cost 25, is not a minimum-cost
tree.

80 C. Fragouli et al.

tree (nodes a8, a5 and a3); as the packet reaches node a5, all channels from
node a5 to its neighbors fail; as a result, there is no path connecting a5 to the
sink, and the packet is lost, i.e., a11 fails to communicate with the sink, even
though there still exists a path from a11 to the sink (through nodes a9, a6 and a2).
So, it is possible that the tree is unable to adapt fast enough to certain failures,
especially in large networks, resulting in temporary disconnection of parts of the
network.

2. Depletion of specific nodes. Nodes located close to the root of the tree (e.g., node
a3 in Fig. 5) may end up carrying significantly more traffic than the rest, as they
participate in multiple paths; as a result, their batteries are depleted significantly
faster. Note that these nodes are precisely the ones that need to work in order for
the network to remain connected: if node a3 in Fig. 5 fails, 9 of the remaining 10
nodes are disconnected from the sink.

4 From Tree to Multipath Routing

In the last section, we looked at a collection protocol that constructs a single path
from each sensor to the sink. In contrast, multipath collection protocols construct
multiple paths from each sensor to the sink, allowing more freedom in route selec-
tion. Intuitively, multipath protocols achieve higher reliability than single-path pro-
tocols at the cost of higher energy consumption.

4.1 Topology Construction

A node can be connected to the sink over disjoint or overlapping paths; we now dis-
cuss these two approaches, as well as some associated computer science problems.

4.1.1 Disjoint Paths

The idea is to construct m disjoint paths from each node to the sink. These paths can
be edge-disjoint (Fig. 6), providing reliability in the face of channel deterioration;
or vertex-disjoint (Fig. 7), providing reliability in the face of node failures. Alterna-
tively, a recent proposal suggests that the paths should be “one-hop apart” (Fig. 8),
i.e., if a node is used in one of the paths, none of its neighbors should be used in the
remaining m − 1 paths; the point is to avoid spatially correlated failures [4].

Intuitively, the more constraints we add to path construction, the higher the result-
ing reliability: Fig. 6 shows two edge-disjoint paths; if node a8 fails, both paths
from a11 to the sink are broken. Figure 7 shows two vertex-disjoint paths; if node
a8 fails, a11 can still communicate with the sink through the other path. On the
other hand, more constraints result in higher-cost paths: given the channel-quality
graph of Fig. 3, Fig. 4 shows the minimum-cost path from node a11 to the sink.
If we want to construct two paths from a11 to the sink that are one-hop apart, we

Multipath Diversity and Robustness for Sensor Networks 81

Fig. 6 Two edge-disjoint
paths connecting node a11

to the sink

Sink

a1

a2

a3

a4

a5

a6

a7

a8

a9

a11

a10

Fig. 7 Two vertex-disjoint
paths connecting node a11

to the sink

Sink

a1

a2

a3

a4

a5

a6

a7

a8

a9

a11

a10

Fig. 8 Two one-hop
separated paths connecting
node a11 to the sink

Sink

a1

a2

a3

a4

a5

a6

a7

a8

a9

a11

a10

necessarily have to choose the two paths shown in Fig. 8, none of which is equal
to the minimum-cost path. In general, the further away a path is located from the
minimum-cost path, the higher its expected cost.

We should note that it is not always feasible to find paths that satisfy such con-
straints. For example, m edge-disjoint paths exist between two nodes only if the
edge min-cut between them is greater or equal to m; similarly, m vertex-disjoint
paths only exist if the vertex min-cut between the two nodes is greater than m.

4.1.2 Algorithmic Complexity of Disjoint-Path Construction

Consider a collection protocol that builds two disjoint paths from each sensor to the
sink. To minimize the number of transmissions, for each sensor, the protocol must
choose the two paths to the sink that have the minimum overall cost (i.e., the sum
of their costs is less than or equal to the sum of the costs of any other two paths
from this sensor to the sink). This problem is known in computer science as the
“min-sum 2-path” problem, and it has been shown to be computationally hard to
solve (NP-hard). The difficulty comes from the fact that the optimal solution may

82 C. Fragouli et al.

involve two paths neither of which is the minimum-cost path, as Example 1 below
illustrates.

Example 1 Figure 9 shows two sets of paths that connect node a11 to the sink: (i)
The first set includes the minimum-cost path (of cost 7) and the second best path (of
cost 13). The total cost is 20. (ii) The second set includes two paths, each of cost 9.
The total cost is 18, which is the minimum overall cost. This example illustrates that
the optimal solution cannot be obtained simply by ranking paths by cost and taking
the two best paths.

Fig. 9 Two sets of path
choices to connect node a11

to the sink: the first set
includes the minimum-cost
path (going through a1, a5

and a3), and the second best
path (going through a10, a8,
a6 and a2). The second set
includes two paths that have
the minimum sum cost

Sink

a1

a2

a3

a4

a5

a6

a7

a8

a9

a11

a10

1
2 2 2

32

4

31

4

2
3

4

1

1

1

6

3

4

2
1

3

2

Sink

a1

a2

a3

a4

a5

a6

a7

a8

a9

a11

a10

1
2 2 2

32

4

31

4

2
3

4

1

1

1

6

3

4

2
1

3

2

So, identifying, for each sensor, two disjoint paths to the sink with the lowest
overall cost is hard. An alternative would be to construct any two disjoint paths,
without looking to minimize the overall cost. We now illustrate that constructing
disjoint paths using heuristics can easily lead to configurations where nodes use
paths of significantly higher cost than necessary.

Example 2 A computationally reasonable way to select two disjoint paths from each
sensor to the sink would be the following:

• Select a minimum-cost path from each sensor to the sink. The union of chosen
paths forms a tree T1.

• Remove all the edges of T1 from the channel-quality graph.
• Considering only the remaining links, select again a minimum-cost path from

every sensor to the sink, which results in a tree T2.

Figures 10, 11 and 12 illustrate this procedure and show a problematic case, where,
in the second tree, node a3 is connected to the sink through a path of cost 9, whereas,

Multipath Diversity and Robustness for Sensor Networks 83

Fig. 10 The first tree T1 on
the cost graph

Sink

a1

a2

a3

a4

a5

a6

a7

a8

a9

a11

a10

1
2 2 2

32

4

31

4

2
3

4

1

5

3

6

3

4

2
1

4

2

Fig. 11 The remaining cost
graph after removing T1

Sink

a1

a2

a3

a4

a5

a6

a7

a8

a9

a11

a10

2

4

3

4

3

4

3

6

3
1

4

2

Fig. 12 The second tree T2.
If the paths to be employed
are not jointly selected, we
may fall into inefficient path
constructions Sink

a1

a2

a3

a4

a5

a6

a7

a8

a9

a11

a10

2

4

3

4

3

4

3

6

3
1

4

2

in the original network, there exist edge-disjoint paths of costs 2, 4 and 5, respec-
tively, that connect a3 to the sink.

4.1.3 Braided Paths

The idea is to first construct a “primary” minimum-cost path from each node to the
sink (as described in Sect. 3), then build a “braid” of alternative paths as follows: for
each node on the primary path, build a path that does not include that node [5, 6].

Example 3 Consider the braided path choices depicted in Fig. 13. The minimum-
cost path from node a11 to the sink involves hops through nodes a8, a5 or a3. If node
a8 fails, it can be replaced by the path segment through nodes a10 and a7. Similarly,
node a5 can be replaced through nodes a6 and a2, while node a3 can be replaced
through nodes a4 and a1.

Intuitively, braided paths are more energy-efficient than disjoint paths, simply
because they are more likely to be physically close to the primary (minimum-cost)
path. One would think that this higher energy efficiency would come at the cost

84 C. Fragouli et al.

Fig. 13 Braided paths: in the
path from node a11 to the
sink, if any of the nodes a8,
a5 or a3 fails, there exists an
alternative available path. For
example, node a5 can be
replaced by using the path
segment through nodes a6

and a2

Sink

a1

a2

a3

a4

a5

a6

a7

a8

a9

a11

a10

of lower reliability (the reason being that braided paths would be less resilient to
multiple-node failures than disjoint paths). Interestingly, early simulation results
suggest that this may not be the case: it turns out that, in practical scenarios, braided
paths can be as failure-resilient as 2-disjoint and 3-disjoint paths; the intuition is that,
in practice, disjoint paths are not physically separated from one another enough to
survive multiple-node failures [5].

4.2 Topology Usage

There are several choices on how to use multiple paths from a node to the sink;
which one is better depends on the specific application requirements. We group the
proposed uses in five broad categories; the first three are relevant for disjoint paths,
while the others for braided ones.

4.2.1 Replicate Transmissions

Each source (i.e., each sensor that has a message to convey to the sink) sends its
message through all available paths to the sink. This approach is sometimes also
described as flooding.

Flooding is typically proposed in conjunction with disjoint paths, where each
path carries a replicate of the same message to the sink. Indeed, to flood a braided
mesh of paths, we would need the intermediate nodes to suppress incoming packets
if a node has more incoming edges than outgoing edges, as is the case for node a3 in
Fig. 13. Similarly, if a node has more outgoing than incoming edges, it would need
to create copies of a received packet and implement multicasting.

Flooding favors reliability over energy efficiency: it sends each message over
multiple paths, hence, increases the probability of the message reaching the sink in
case of node and channel failures; yet, when no such failures occur, flooding uses
on the order of m times the number of necessary transmissions to get the message to
the sink (assuming m paths are being used). Moreover, when multiple sources send
out messages at the same time, flooding can result in congestion, i.e., collisions and
queue build-up.

Multipath Diversity and Robustness for Sensor Networks 85

So, flooding is an appropriate choice for applications in which sensors send mes-
sages to the sink infrequently and, when they do, reliability is more important than
energy efficiency.

4.2.2 Independent Transmissions

In this approach, sources use each path to send a different message to the sink.
This approach favors information rate over reliability: each source can send mul-

tiple messages to the sink at the same time; yet, messages sent over paths with node
or channel failures may not be delivered. In practice, this approach is not energy-
efficient either, in the sense that some messages are sent over more-than-minimum-
cost paths. Moreover, similarly to the previous case, when multiple sources send out
messages at the same time, it can result in congestion.

Thus, this approach is suitable for applications where sensors send out messages
infrequently and, when they do, speed of dissemination is of critical importance.
Such an application would be for example, if a sensor wants to send an image of an
intruder to the sink; in such a situation, the sensor needs to transmit multiple packets
to the sink as fast as possible.

4.2.3 Erasure Coding

Consider a configuration where a source is connected to the sink through m disjoint
paths; sending the same message over m paths corresponds to a repetition code of
rate 1/m; sending a different message over each path corresponds to a rate-1 code.
Between these two extremes, the source can use an erasure code of rate k/m: the
source sends m coded packets; if the sink receives any k out of the m coded packets,
it can retrieve the original information.

This approach enables a trade-off between reliability and speed of dissemination.
However, similar to the previous case, it is not energy-efficient, as it uses suboptimal
paths; moreover, similar to both previous cases, it can cause congestion.

4.2.4 Path-Selective Routing

In this approach, each message is routed along a single path from the corresponding
source to the sink. The path is determined dynamically in the following way: each
node that receives the message selects the best next-hop to the sink according to
some local criterion such as:

• what is currently the minimum-cost next hop towards the sink;
• what is currently the minimum-cost path towards the sink;
• which is the next node that has received less traffic, and
• which is the next node that has most remaining energy.

This approach is well suited for braided-mesh topologies, where each node has
multiple choices on how to forward a packet to the sink [5].

86 C. Fragouli et al.

4.3 Room for Improvement

Multipath routing gracefully extends routing over trees to routing over larger topolo-
gies. There is, however, room for improvement regarding the following issues:

• Control traffic. Constructing and maintaining a larger topology requires (signif-
icantly) more control traffic. There is evidence that maintaining more than two
paths per sensor (or more than two incoming and outgoing links per sensor node)
requires control traffic that outweighs the benefits of multipath, as the required
transmissions for control information consume a significant portion of the net-
work resources (energy, wireless bandwidth, processing time) [6]. This problem
becomes more pronounced when the network topology changes fast – in fact, for
mobile sensor networks, constructing and maintaining multiple paths becomes
practically infeasible.

• Algorithmic complexity. Identifying an optimal multipath topology is a computa-
tionally hard problem, even in the case where all topological information (chan-
nel quality between all pairs of nodes) is available at all nodes. Using suboptimal
topologies can reduce the potential benefits of multipath.

• Broadcasting. Existing proposals do not exploit the inherent broadcasting capa-
bility of the wireless medium. For instance, consider an approach where each
node that overhears a packet forwards it to the sink – even though it was not
the packet’s intended receiver. Such an “opportunistic” approach has the poten-
tial to increase reliability (because each packet is forwarded through multiple
paths), but also waste network resources, including battery life (when there are no
node/channel failures). In networks with tens or hundreds of nodes, controlling
the number of redundant packets in the network is practically infeasible.

Ideally, we would like to have a multipath collection protocol that requires
insignificant control traffic (compared to the actual data traffic), is transparent to
the underlying topology changes, and exploits broadcasting. New ideas that have
recently emerged from the area of network coding hold the potential to help towards
this direction; we will next review the basic ideas in network coding and discuss
how they fit in the context of sensor networks.

5 What Is Network Coding

Network coding is a new area that promises to revolutionize the way we treat infor-
mation in a network, and have a deep impact in all network functionalities, such
as routing, network storage, and network design [7–11]. The novel paradigm in
network operation that network coding brings is that, instead of having individual
source packets traversing a network, we instead have combinations of packets, each
bringing some type of “evidence” about the source packets. These packet combina-
tions are created throughout the network: we allow intermediate network nodes to

Multipath Diversity and Robustness for Sensor Networks 87

process their incoming information packets, and in particular, combine them to cre-
ate new packets. A receiver collecting a sufficient number of such combined packets
can use them to retrieve the original information sent by the sources. The area of
network coding is centered around the application of this basic idea, of dealing with
“evidence” instead of individual packets. The following “classical” example in the
network coding literature illustrates the potential benefits over a wireless medium.

Example 4 Consider a wireless ad-hoc network, where devices A and C would like
to exchange the binary files x1 and x2 using device B as a relay. We assume that time
is slotted, and that a device can either transmit or receive a file during a time slot
(half-duplex communication). Figure 14 depicts on the left the standard approach:
nodes A and C send their files to the relay B, who in turn forwards each file to the
corresponding destination.

The network coding approach takes advantage of the natural capability of wire-
less channels for broadcasting to give benefits in terms of resource utilization, as
illustrated in Fig. 14.

In particular, node C receives both files x1 and x2, and bit-wise xors them to
create the file x1 + x2, which it then broadcasts to both receivers using a common
transmission. Node A has x1 and can thus decode x2. Node C has x2 and can thus
decode x1.

This approach offers benefits in terms of energy efficiency (node B transmits
once instead of twice), delay (the transmission is concluded after three instead of
four time slots), wireless bandwidth (the wireless channel is occupied for a smaller
amount of time) and interference (if there are other wireless nodes attempting to
communicate in the neighborhood). The benefits in the previous example arise from
that broadcast transmissions are made maximally useful to all their receivers.

Note that x1 + x2 is nothing but some type of binning or hashing for the pair
(x1, x2) that the relay needs to transmit. Binning is not a new idea in wireless
communications. The new element is that we can efficiently implement such ideas
in practice, using simple algebraic operations.

Fig. 14 Nodes A and B
exchange information via
relay B. The network coding
approach uses one broadcast
transmission less

Without Network Coding

A B C

A B C

A B C

A B C

With Network Coding

A B C

A B C

A B C
x1

x2

x1 x1

x2x2

x1

x2

x1 + x2 x1 + x2

88 C. Fragouli et al.

5.1 Network Coding in Practice

In Example 3, we implicitly assumed that each node performs fixed encoding oper-
ations. The receivers know these operations, and use this knowledge to decode.
In particular, nodes A and B know in advance that they will receive the linear
combination x1 + x2. In a practical network, where the network structure, delays
and synchronization varies, the selection and knowledge of the linear combination
coefficients needs to be distributed in a decentralized manner.

Fortunately, three ideas, that appeared successively in time, give us an elegant
and flexible way to perform network coding in a completely decentralized manner.
These are:

1. Randomly chose the linear combinations at each network node [12].
2. Append “coding vectors” at the header of each packet to allow the receivers to

decode without need of synchronization [13].
3. Use subspace coding to achieve the same goal as in (2) more efficiently [14].

The first idea determines what intermediate nodes in the network do. The second
and third offer two alternative approaches for the encoding of the data at the sources
and corresponding decoding at the receivers.

5.2 Randomized Network Coding

Assume we have n source packets {x1, . . . , xn} that contain symbols over a field Fq

and we want to convey them to multiple destinations over a network using network
coding. Throughout the network, intermediate nodes perform linear combining of
the source packets. Thus, a destination receives combinations of the form

c1x1 + c2x2 + · · · + cn xn,

where ci ∈ Fq . In the network coding literature, the vector of coefficients

c = [c1, c2, . . . , cn]

is called a coding vector. Each destination can retrieve the data, if it receives n
linearly independent combinations of the source packets, or, n linearly independent
coding vectors. For example, let {ρi } be the combined packets a destination collects,
we can write in a matrix form:

⎡

⎢⎢
⎢
⎣

ρ1

ρ2
...

ρn

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎣

c11 c21 . . . cn1

c12 c22 . . . cn2

. . .

c1n c2n . . . cnn

⎤

⎥⎥
⎦

︸ ︷︷ ︸
A

⎡

⎢⎢
⎢
⎣

x1

x2
...

xn

⎤

⎥⎥
⎥
⎦

. (1)

Multipath Diversity and Robustness for Sensor Networks 89

If the linear combinations are independent, i.e., matrix A is full rank, we can solve
the above equations and retrieve the source packets. The task of network code design
amounts to deciding what linear combinations to form throughout the network so
that each receiver gets a full rank set of equations.

Randomized network coding is based on the simple idea that, for a field size
q large enough, there exist so many valid solutions, that even random choices of
the coefficients allow us to find a valid solution with high probability. Thus we can
simply ask each intermediate node in the network to create and send uniform at
random linear combinations of the packets it has received. The associated proba-
bility of error can be made arbitrarily small by selecting a suitably large alphabet
size [12]. For example, if we could choose the coefficients {ci j } of matrix A in
(1) uniformly at random, the matrix A would be full rank with probability at least
(1 − 1

q)n . In practice, simulation results indicate that even for small field sizes (for

example, using m = 8 bits per symbol, i.e., q = 28) the probability of error becomes
negligible [15].

Randomized network coding requires no centralized or local information, is scal-
able and yields to a very simple implementation. Thus, it is very well suited to
a number of practical applications, such as sensor networks and more generally
dynamically changing networks.

5.2.1 Generations and Coding Vectors

The next question to answer is, even if we randomly select what linear combinations
to perform, how do we convey to the destinations what are the linear combinations
they have received so that they can decode. Moreover, in a network where informa-
tion gets generated at a constant rate, we need to decide what packets to combine
and how often do we decode. To achieve these, we cannot rely on synchronization,
since packets are subject to random delays, may get dropped, and follow different
routes.

The approach in [13] first groups the packets into generations. Packets are com-
bined only with other packets in the same generation. A generation number is
appended to the packet headers to make this possible (one byte is sufficient for
this purpose). The size of a generation can be thought of as the number of source
packets n in synchronized networks: it determines the size of matrices the receivers
need to invert to decode the information. Since inverting an n × n matrix requires
O(n3) operations, and also since waiting to collect n packets affects the delay, it
is desirable to keep the generation size small. On the other hand, the size of the
generation affects how well packets are “mixed”, and thus it is desirable to have a
fairly large generation size. Indeed, if we use a large number of small-size gener-
ations, intermediate nodes may receive packets destined to the same receivers but
belonging to different generations. Characterizing this trade-off is an open research
problem.

As a second step, the approach in [13] appends within each packet header a
vector of length n that describes which linear combination of the source packets

90 C. Fragouli et al.

{x1, . . . , xn} it contains. These vectors are what we called coding vectors. The
encoded data is called the information vector. For example, the coding vector
ei = (0, . . . , 0, 1, 0, . . . 0), where the 1 is at the i th position, means that the infor-
mation vector is equal to xi (i.e., is not encoded). A packet that contains the linear
combination ρ = c1x1 + c2x2 + · · · + cn xn has the coding vector (c1, . . . , cn) and
the information vector ρ.

The coding vectors are updated locally at each node that performs linear com-
bining, to reflect the new linear combination of the source packets that the new
packet carries. For example, if a node receives two packets with coding vec-
tors ei = (0, . . . , 0, 1, 0, . . . 0) and (c1, . . . , cn), with corresponding information
vectors xi and ρ, it can create the new information vector αxi + ρ for some
value α ∈ Fq . To send this new information vector, it will use the coding vec-
tor (c1, . . . ci−1, ci + α, ci+1, . . . , cn). Combining can occur recursively and several
times inside the network.

Each receiver examines the coding vectors of the packets it receives, to learn
what are the linear combinations it has received. In particular, the coding vectors it
receives are nothing but the rows of the matrix A in (1) that determine the linear
equations it needs to solve.

Appending coding vectors to packets incurs an additional overhead. For example,
for a packet that contains 1400 bytes, where every byte is treated as a symbol over
F28 , if we have h = 50 sources, then the overhead is approximately 50/1400 ≈
3.6%.

5.2.2 Subspace Coding

The approach based on appending coding vectors in order to be able to decode at
the receiver is well suited for large packets where the overhead is small. In wireless
sensor networks, and generally, wireless networks, the situation is quite opposite: it
is quite often the case that packets consist of a few bits. In such cases, using coding
vectors can add a significant overhead.

A new approach recently proposed in [14, 16] promises to be helpful in the case
of very short packet lengths. This approach is again designed to work with use of
randomized network coding, and is based on using subspaces as “codewords” to
convey the information from the sources to the receivers. For simplicity we will
here consider a single source transmitting n independent packets to receivers, but
the same approach can easily be extended to multiple sources [17]. We note that
recent work [18–22] has established that subspace coding only offers benefits as
compared to the coding vectors approach for very short block lengths.

Consider a source that would like to convey n independent source packets to
receivers over a network that employs randomized network coding. Assume that
each packet has length λ over Fq . The n packets can take in total M = qnλ values.
Thus the source, for each set of packets, has one of these values to convey.

The source can achieve this as follows. First, it selects to operate over an nL
dimensional vector space V over Fq , i.e., a vector space, where vectors have length

Multipath Diversity and Robustness for Sensor Networks 91

nL and have elements in Fq . A basis of this space consists of nL linearly indepen-
dent vectors. For example, the space F

3
2 has the basis

{e1 = [1 0 0], e2 = [0 1 0], e3 = [0 0 1]}.

A subspace π is a subset of the vector space V that is a vector space itself. We
can think of subspaces as “planes” that contain the origin. For example, the space
F

3
2 contains 7 two-dimensional subspaces. One such subspace is π1 =< e1, e2 >.

Another is π2 =< e2 + e3, e1 >. It also contains 7 one-dimensional subspaces,
one corresponding to each non-zero vector. Moreover, the subspace (plane) π1 =
<e1, e2 > contains the three “line” (one-dimensional) sub-subspaces π3 =<e1 >,
π4 =<e2>, π5 =<e1+e2>. Therefore, we can define subspaces of lower dimension
as sub-spaces of higher dimensional subspaces. In the above example, we can see
that π3 ⊂ π1 ⊂ F

3
2 = V . We say that two subspaces are distinct if they differ in

at least one dimension. For example, π1 =<e1, e2> and π2 =<e2 + e3, e1> are
distinct.

The source selects a codebook of M distinct subspaces, and each set of n packets
is mapped to a different such subspace. The receivers learn this codebook. To convey
the value of the source packets, the source needs to convey what is the particular
subspace these packets are mapped to. To do so, it inserts in the network a set of
basis vectors (packets) that span the subspace. Assume for example it sends the
vectors {b1, . . . , bk} that span a subspace π . The critical observation is that, the
mixing through randomized network coding intermediate nodes perform, preserves
the subspaces. Indeed, linear operations, no matter what these operations are, can
only create vectors that are in the span of the basis {b1, . . . , bk} and thus within π .
As a result, every node that receives k linearly independent vectors will be able to
identify which is the subspace π that the source has sent. The source has then trans-
mitted information through the choice of the subspace that it sends. This property
makes the use of subspaces for encoding robust to the topology of the network and
to arbitrary linear operations performed at the intermediate nodes.

6 Network Coding for Sensor Networks

Network-coding ideas and techniques have already been successfully applied in
the context of wireless mesh and/or ad-hoc networks (see [23–26] for some exam-
ples). A natural question to ask is, are sensor networks any different? Apart from
the fact that both types of networks are wireless, they differ in almost everything
else that matters when designing a network protocol: topology, traffic patterns,
performance metrics. For example, in wireless mesh/ad-hoc networks, network cod-
ing offers throughput benefits when certain multicast or concurrent-unicast traffic
patterns occur, such as the well known pattern in Fig. 14. These patterns do not
naturally occur in sensor networks, which typically carry many-to-one traffic from
the sensors to the sink; for this traffic pattern, network coding does not offer through-
put benefits. In many sensor-network applications, throughput is not even relevant

92 C. Fragouli et al.

as a metric – as discussed, the two predominant metrics are energy efficiency and
reliability.

There is evidence that network coding can help achieve a better energy effi-
ciency/reliability trade-off than traditional single-path or multipath collection proto-
cols. Intuitively, by allowing nodes to mix incoming packets, network coding intro-
duces each piece of information into multiple paths – i.e., network coding offers
a new way to implement multipath communication. However, before we examine
the potential benefits, we need to solve a crucial practical problem: as the following
examples illustrate, in a sensor network where a large number of nodes communi-
cate short messages to the sink, it does not make sense to use neither coding vectors
nor subspace coding.

Example 5 Consider a sensor network consisting of 100 sensors, where each sensor
periodically communicates a 1-byte message to the sink. Assume that we want to
implement network coding using coding vectors and operations over a field of size
q = 24. In this case, we would need 50 bytes of coding-vector data per packet
to convey just 1 byte of information. Such overhead rules out coding vectors as a
practical design option.

Example 6 Subspace coding offers increased efficiency as it removes the need for
coding vectors. However, designing subspace code for the case where the sources
are not collocated is challenging. Consider for example the case where two sensor
nodes use codebooks consist of subspaces of a vector space F

�
q , i.e.,

Ci = {π (i)
j : 1 ≤ j ≤ |Mi |}, i = 1, . . . , n.

To transmit information to the sink, source i maps a measured value to one such
subspace π and inserts in the network d vectors that span π . In relaying information
towards the sink, the sensor linearly combines all packets it has received (includ-
ing that generated by itself) and transmits the combined packet to the next relays
towards to the sink. As a result, the sink will observe vectors from the union of
subspaces inserted by all the sources. In particular, if source i inserts the subspace
πi , the sink will observe vectors from the subspace π1 + π2 + · · · + πn. Using the
knowledge of the codebooks {Ci }, it needs to decode the sensor data.

To be able to correctly decode at the sink, we need to ensure that every combi-
nation of sensor data results in a distinct union subspace. Assume for simplicity we
have two source nodes, S1 using the codebook C1 = {π1, π2, π3}, while S2 the
codebook C2 = {π4, π5, π6}. Table 1 summarizes all outcomes. For this code to
be identifiable, we want all (or some) entries in Table 1 to correspond to distinct
subspaces. For example, π1 + π4 should be a distinct subspace from π2 + π5.

This problem is hard to solve even for the case of two sources, and a very small
codebook (in our example each node transmits only 3 values). Designing such a
code for 100 sources would be an admirable feat, let alone designing a code that can
also be efficiently decoded.

Multipath Diversity and Robustness for Sensor Networks 93

Table 1 Coding for two sources

C2/C1 π1 π2 π3

π4 π1 + π4 π2 + π4 π3 + π4

π5 π1 + π5 π2 + π5 π3 + π5

π6 π1 + π6 π2 + π6 π3 + π6

6.1 Code Design

We now describe a network-coding approach for sensor networks. The main intu-
ition in this approach is to attempt to reduce the length of the coding vectors, by
restricting the freedom in the coding operations that intermediate network nodes
have. Indeed, the classic design of coding vectors, allows potentially all source pack-
ets to get combined together; our approach is to employ coding vectors that allow at
most m packets get combined [18]. This is motivated through three observations:

1. Coding vectors allow us to decode the data even if all the sources’ packets get
mixed. However, packets get combined only if their paths to the sink overlap.
For a network symmetrically deployed around a sink, it is unlikely that all paths
will overlap.

2. Not all sensors may be actively measuring during every round. For example,
when sensing anomalies, we expect a small fraction of all potential sources to
send information.

3. We can artificially restrict the number of sources that get combined, by append-
ing to each packet a few bits to count the number of combined packets it contains.

Our design problem can now be stated as follows. Given n sources, the sink is
going to observe packets that contain linear combinations of at most m sources. We
want to design codes that allow us, by receiving each combined vector, to determine
which linear combination of the source packets it contains. Our goal is to utilize
vectors of length � that is much smaller than the number of sensor nodes n.

Our construction utilizes properties of erasure correction codes, and proceeds as
follows. Select a linear code of length n, minimum distance 2m +1, and redundancy
�, with � as small as possible. Consider the � × n parity check matrix H. Assign to
each source as coding vector the 1-dimensional subspace spanned by one column of
H. The source, includes this column in front of the data packet it sends, exactly in
the same way as in the case of the usual coding vectors.

Intermediate nodes combine up to m source packets to create a coded packet,
using randomly selected coefficients. The sink, when receiving each encoded packet
can determine by examining the coding vectors:

• which columns of the matrix H contribute to the resulting linearly combined
vector.

• using this knowledge, the exact coefficients that have been used for the combin-
ing.

94 C. Fragouli et al.

The reason our construction allows to perform these operations, stems from a
well known property the columns of matrix H satisfy. Let A denote the set of these
vectors. Then, if the code has minimum distance 2m + 1, any set of 2m vectors in
A are linearly independent [27]. This directly implies the following properties. For
vectors in A:

(P1) Any set of 0 < β < 2m vectors span a distinct β-dimensional subspace.
(P2) The distance between two subspaces π1 and π2, where each subspace is

spanned by a different set of 0 < β < 2m vectors, equals min{β, 2m − β}.

From property (P1) we see that the sink receives distinct subspace for every distinct
set of m sources, and therefore is able to decode the identities and the information.
Thus, even though there are n = |A| possible sources, we do not need to use vectors
of length proportional to n, but instead, of length � ≥ 2m.

The following example illustrates this procedure.

Example 7 Consider a code with minimum distance 2m + 1 = 5 and a parity check
matrix H of dimension � × n with columns h1, . . . , hn:

H = [h1 h2 . . . hn] (2)

Each source appends a different hi vector in the header of its information packet,
and sends the packet through the network where intermediate nodes combine up to
two packets. The sink receives n packets, and extracts from their header n vectors of
the form yk = αk1hk1 + αk2hk2, for k = 1, . . . n. For each vector yk , the unknowns
are the indices k1 and k2, i.e., which column vectors are combined, as well as the
coefficients αk1 and αk2. From property (P1), the sink can uniquely determine the
column vectors hk1 and hk2 in whose span lies yk . Using this knowledge, it can then
uniquely identify αk1 and αk2. This implies that the k-th packet received at the sink,
contains the linear combination of the packets send by the sources k1 and k2 with
coefficients αk1 and αk2.

Thus to decode, the sink can create an n × n transfer matrix, where row k will
contain exactly two nonzero entries: αk1 at position k1 and αk2 at position k2, and
then solve the system a system of linear equations to retrieve the data.

In order to quantify our savings, we need to examine how � scales with m. This is
related to a well-studied problem in coding theory, namely, for a given code length
n � |A|, and a given minimum distance 2m + 1, what are upper and lower bounds
on the number of codewords A(n, m) this code can have [27]. Using the Gilbert-
Varshamov lower bound and the sphere packing upper bound [27], it can be shown
that for large values of n,

nH2

(
2m + 1

2n

)
≤ � ≤ nH2

(
2m + 1

n

)
, (3)

Multipath Diversity and Robustness for Sensor Networks 95

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

Total number of sensor nodes n

Le
ng

th
 o

f t
ra

ns
m

itt
ed

 p
ac

ke
t

Lower bound

Upper bound

n

m = 2
m = 20

Fig. 15 Bounds on the length � of the coding vectors when m = 2 and m = 20 sources get
combined, as a function of the number of sensor nodes n

where H2 is the binary entropy function, namely, H2(p) = −p log p−(1−p) log(1−
p). Figure 15 plots the bounds in (3) as a function of n, for m = 2 and for m = 20.
We conclude that our proposed code design results in using a fraction of the length
n, that goes to zero as the ratio 2m+1

n goes to zero.

Example 8 Using a table of the best codes known [27] we can see for example that,
there exist binary linear codes of length n = 512 with redundancy � = 18 and
minimum distance 2m + 1 = 5. Thus in a sensor network with 512 nodes if at most
m = 2 source vectors get combined, we need to use vectors of length � = 18.

Example 9 An alternative approach to using shortened coding vectors, is to use
smaller generations. In particular, we can assume that we divide the source nodes
into groups, where each group contains m sources, and allow only the packets that
originate from the same set of sources to be combined. A special counter attached
to the header of the packet can specify the generation in which the packet belongs.
This approach differs from our proposed approach in that, it may happen for a node
to have multiple uncoded packets, but not be able to code them together as they
belong in different generations.

6.2 Opportunistic Broadcasting with Network Coding

The idea is the following: when a node sends out a packet, apart from the intended
receiver, some of the node’s neighbors opportunistically overhear and receive the
transmitted packet; each node forwards towards the sink a mix of the packets it

96 C. Fragouli et al.

receives and the ones it opportunistically overhears. Thus, each piece of information
may appear, linearly combined, in a large number of packets across the network.
By propagating multiple packets that contain different linear combinations of the
original data, we can create multiple opportunities for decoding the original data
and achieve increased robustness to path failures.

We now outline a collection protocol that relies on this idea: it constructs a tree
and implements opportunistic broadcasting on top. We first describe how the tree is
used, then how it is constructed.

Consider a sensor network where nodes have formed a tree rooted at the sink.
The network operates in rounds. During each round, each node stores the packets it
receives from its children as well as any packets it opportunistically overhears from
its other neighbors. It starts transmitting as soon as one of the following conditions
is met:

• It has received packets from all its children.
• It has received a packet from at least one child and a time window has expired.
• It has overheard new information that exceeds a predetermined threshold.

A node continues to transmit until its parent signals that it has successfully received
one of its packets, or an upper limit on the number of per-node transmissions is
reached. Each transmission carries a different linear combination of the node’s
received/overheard packets – such that, if a neighbor happens to successfully over-
hear more than one transmissions, each one will bring new information to it.

Example 10 Consider the tree shown in Fig. 5 and assume we use it as described
above. Recall that, in this tree, a node’s parent is not necessarily its minimum-cost
neighbor (it is the next hop on the node’s minimum-cost path to the sink). For
example, consider node a10; to reach its parent, a8, it must transmit on average
twice; however, it can reach a7 by transmitting on average once. Hence, if node a10

transmits until a8 acknowledges receipt of a packet, it is likely to transmit twice,
and a7 is likely to successfully overhear both transmissions, i.e., collect two differ-
ent linear combinations of the packets previously received and overheard by a10.
Similarly, if node a2 transmits until its parent a3 acknowledges receipt of a packet,
its transmissions are likely to be successfully overheard by the sink.

We now discuss how to construct the tree. Assume that we want to ensure that
each transmission be received by at least two neighbors of the transmitting node. We
can implement this requirement in two ways: (i) Hard, where we explicitly mandate
that two neighbors acknowledge reception. This effectively amounts to constructing
two trees, which, as discussed in Example 2, is computationally hard. (ii) Soft, where
we require that on average at least two neighbors receive each transmitted packet.
We choose the latter and implement it as follows.

Consider a node that has multiple neighbors. In the Collection Tree Protocol
(described in Sect. 3), each node chooses its parent so as to minimize the over-
all cost of communicating to the sink. We now revise this as follows: each node
chooses its parent so as to minimize the overall cost of communicating to the sink,
subject to the following redundancy constraint: a node is not allowed to choose as

Multipath Diversity and Robustness for Sensor Networks 97

Fig. 16 A tree that satisfies
the redundancy constraint:
each node is connected to the
tree through a link that is not
its minimum-cost link, with
the exception of the nodes
that are connected directly to
the sink

Sink

a1

a2

a3

a4

a5

a6

a7

a8

a9

a11

a10

1
2 2 2

2

4

31

4

2
3

4

1

5

3

6

3

4

2
1

4

2

3

its parent its lowest-cost neighbor, unless it has no other choice. This protocol can
be implemented as easily as CTP, by simply adding the redundancy constraint.

When a node a transmits a packet and its parent b successfully receives it, it is
likely that so do a’s neighbors that are connected to it through better links than b.
The redundancy constraint ensures that, whenever possible, at least one such neigh-
bor exists for each node. The following example illustrates this property.

Example 11 Figure 16 depicts a tree that satisfies the redundancy constraint. In this
tree, node a4 chooses node a1 as its parent, whereas its lowest-cost neighbor is a3.
On average, the packets received by a1 are also received by a3. The cost of this tree
is 34. The cost of the tree constructed by CTP (shown in Fig. 5) was 25. So, we
ensure that on average each packet is received by at least two neighbors at the cost
of increasing transmissions by approximately 35%.

7 Conclusions

In this chapter, we looked at the problem of designing a protocol that performs the
simplest possible sensor-network task: communicate measurements from the sen-
sors to the sink, without any in-network information processing. We described pro-
tocols that balance the competing goals of energy efficiency and reliability, ranging
from a simple tree-based protocol to multipath protocols, and discussed their basic
benefits and drawbacks; we also outlined an emerging protocol based on network
coding. We close by noting that a rigorous study would be necessary to evaluate the
relative value of each approach and how well each is matched to specific application
needs.

References

1. H. Dubois-Ferrière, L. Fabre, R. Meier, and P. Metrailler, “Tinynode: a comprehensive plat-
form for wireless sensor network applications,” in Proceedings of the IEEE International
Symposium on Information Processing in Sensor Networks (IPSN), April 2006.

2. N. Burri, P. von Rickenbach, and R. Wattenhofer, “Dozer: ultra-low power data gathering
in sensor networks,” in Proceedings of the IEEE International Symposium on Information
Processing in Sensor Networks (IPSN), April 2007.

98 C. Fragouli et al.

3. R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, and A. Woo, “The collection tree
protocol,” http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html, 2006.

4. Z. Li and B. Li, “Improving throughput in multihop wireless networks,” IEEE Transactions
on Vehicular Technology, vol. 55, pp. 762–773, 2006.

5. S. De, C. Qiao, and H. Wu, “Meshed multipath routing with selective forwarding: an efficient
strategy in wireless sensor networks,” Computer Networks, vol. 43, no. 4, pp. 481–497, 2003.

6. D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-resilient, energy-efficient multi-
path routing for wireless sensor networks,” in Proceedings of the ACM Symposium on Mobile
Ad Hoc Networking and Computing (MOBIHOC), October 2001.

7. R. W. Yeung and N. Cai, “Network error correction, i: basic concepts and upper bounds,”
Communications in Information and Systems (CIS), vol. 6, pp. 19–35, 2006.

8. N. Cai and R. W. Yeung, “Network error correction, ii: lower bounds,” Communications in
Information and Systems (CIS), vol. 6, pp. 37–54, 2006.

9. C. Fragouli and E. Soljanin, Network Coding: Fundamentals, ser. Foundations and Trends in
Networking. Now Publishers, Delft, 2007, vol. 2, pp. 1–133.

10. C. Fragouli and E. Soljanin, Network Coding: Applications, ser. Foundations and Trends in
Networking. Now Publishers, Delft, 2008, vol. 2, pp. 135–269.

11. T. Ho and D. S. Lun, Network Coding: An Introduction. Cambridge University Press, Cam-
bridge, UK, 2008.

12. T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, “A random linear
network coding approach to multicast,” IEEE Transactions on Information Theory, vol. 52,
pp. 4413–4430, 2006.

13. P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proceedings of the Allerton,
October 2003.

14. R. Koetter and F. Kschischang, “Coding for errors and erasures in random network coding,”
in Proceedings of the IEEE International Symposium on Information Theory, June 2007.

15. Y. Wu, P. A. Chou, and K. Jain, “A comparison of network coding and tree packing,” in Pro-
ceedings of the IEEE International Symposium on Information Theory, June 2004.

16. D. Silva and F. R. Kschischang, “Using rank-metric codes for error correction in random
network coding,” in Proceedings of the IEEE International Symposium on Information Theory,
June 2007.

17. M. Jafari Siavoshani, C. Fragouli, and S. Diggavi, “Non-coherent network coding for multiple
sources,” in Proceedings of IEEE International Symposium on Information Theory, 2008.

18. M. Jafari Siavoshani, L. Keller, C. Fragouli, and K. Argyraki, “Compressed network coding
vectors,” in Proceeding of the IEEE International Symposium on Information Theory, June
2009.

19. M. Jafari Siavoshani, S. Mohajer, C. Fragouli, and S. Diggavi, “On the capacity of non-
coherent network coding,” in Proceedings of the IEEE International Symposium on Infor-
mation Theory, June 2009.

20. S. Mohajer, M. Jafari Siavoshani, S. Diggavi, and C. Fragouli, “On the capacity of multi-
source non-coherent network coding,” in Proceeding of the IEEE Information Theory Work-
shop, June 2009.

21. D. Silva, F. R. Kschischang, and R. Koetter, “Capacity of random network coding under a
probabilistic error model,” in Proceeding of the 24th Biennial Symposium on Communications,
June 2008.

22. A. Montanari and R. Urbanke, “Coding for network coding,” arXiv:cs.IN/0711.3935, 2007.
23. C. Fragouli, J. Widmer, and J.-Y. Le Boudec, “A network coding approach to energy efficient

broadcasting: From theory to practice,” in Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), April 2006.

24. S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: analog network cod-
ing,” in Proceedings of the ACM SIGCOMM, August 2007.

25. S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft, “Xors in the air: practical
wireless network coding,” in Proceedings of the ACM SIGCOMM, August 2006.

Multipath Diversity and Robustness for Sensor Networks 99

26. C. Gkantsidis, W. Hu, P. B. Key, B. Radunovic, P. Rodriguez, and S. Gheorghiu, “Multipath
code casting for wireless mesh networks,” in Proceedings of the ACM CoNEXT, December
2007.

27. F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes, ser. North-
Holland Mathematical Library. North Holland, Amsterdam, Netherlands, 1983.

	Multipath Diversity and Robustness for Sensor Networks
	Christina Fragouli, Katerina Argyraki, and Lorenzo Keller
	1 Introduction
	2 What is a Collection Protocol?
	2.1 Path Cost and Channel Quality

	3 Routing on a Tree
	4 From Tree to Multipath Routing
	4.1 Topology Construction
	4.1.1 Disjoint Paths
	4.1.2 Algorithmic Complexity of Disjoint-Path Construction
	4.1.3 Braided Paths

	4.2 Topology Usage
	4.2.1 Replicate Transmissions
	4.2.2 Independent Transmissions
	4.2.3 Erasure Coding
	4.2.4 Path-Selective Routing

	4.3 Room for Improvement

	5 What Is Network Coding
	5.1 Network Coding in Practice
	5.2 Randomized Network Coding
	5.2.1 Generations and Coding Vectors
	5.2.2 Subspace Coding

	6 Network Coding for Sensor Networks
	6.1 Code Design
	6.2 Opportunistic Broadcasting with Network Coding

	7 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

