
Low cost security for sensor networks
Emre Atsan, Iris Safaka, Lorenzo Keller, Christina Fragouli

EPFL, Switzerland

Abstract—We design and evaluate a lightweight encryption
protocol suitable for sensor networks, that enables weak security
in the presence of passive eavesdroppers. At every communication
round, our protocol creates a key between each sensor node and
the sink, by appropriately mixing and coding information packets
that the nodes passively overhear. Evaluation using the TOSSIM
simulator indicates that with our protocol we can gain significant
security benefits at low overhead cost. 1

I. INTRODUCTION

This work builds on SenseCode, a protocol we developed
and implemented in [1], that uses network coding techniques
to increase the reliability of data collection in wireless sensor
networks; our simulation and experimental results show that
in some situations SenseCode can offer up to 30% benefits in
terms of reliable data collection as compared to state of the art
alternatives, such as the Collection Tree Protocol (CTP) [2].

In this paper we complement SenseCode with a lightweight
encryption protocol, that enables to increase security at low
additional cost to the unprotected data collection. Our goal is
not to offer perfect (information theoretic) security, but instead,
to explore what additional security we can achieve, when
constrained not to use (or use very few) additional resources,
to those used for the data communication.

Our adversary, Eve, is a passive eavesdropper or an honest
and curious network node who is limited in terms of presence
over space. That is, Eve is located at (any) one location in
the network, for example next to one of our sensor nodes, and
attempts to overhear all transmissions; moreover, she may not
be permanently overhearing. A use case could be when the
collected sensor data are to be sold to customers; a customer,
to avoid paying, could potentially setup an eavesdropping node
and try to acquire the data while it is transmitting towards
the sink. Our scheme aims to constrain the stingy customer
to learn at most a small fraction of the data. In another
use case, perhaps the sensor nodes themselves would like,
if possible, not to reveal their individual measurements to
the other participating nodes. Our scheme would in this case
increase the privacy of the participating nodes.

Our encryption protocol tries to balance the following
requirements: (1) we want to use a one-time-pad approach
for encryption, as encoding and decoding has low complexity;
that is, at every communication round, use a pairwise secret
key known to each sensor node and the sink, as one-time pad
to encrypt the sensor data; (2) we want to use a different
pairwise key per communication round, so that, an adversary
that captures the key of one round cannot unlock subsequent
rounds; (3) at the same time we want to avoid the overhead
of a dedicated “key generation/discovery phase” to construct

1This work was supported by the European Research Council grant
NOWIRE ERC-2009-StG-240317.

a pairwise sensor-node sink key before each communication
round.

To address these requirements, we propose to construct
each key from past data, collected or overheard in previous
communication rounds; in particular, keys are constructed
as random linear combinations of the past data that both
the sensor node and the sink have. An important aspect of
this approach is that we can create these keys with low
complexity both computationally and in terms of memory
requirements. Thus, we can efficiently renew our keys at each
communication round, with very low cost, as we essentially
reuse the communication of past data for our key generation.

The security of our keys relies on that, an adversary, will
not have overheard exactly the same data as any sensor
node in the network. This can happen because the adversary
may not be present at all communication rounds, or may be
physically separated from the sensor node. Even if none of the
above happens, with high probability a passive eavesdropper
will not overhear exactly the same transmissions as a node
due to the random wireless channel variation and losses.
We strengthen this effect by using past data across multiple
communication rounds to construct our keys, which would
require the adversary to overhear the same data as a node
over multiple communication rounds as well.

Note that network coding naturally offers weak security, as
observed in the literature in the case of multicasting (the same
arguments naturally extend for data collection) [3]. Our proto-
col can be viewed as enhancing this network coding security,
where we now use linear combinations not only of current
but also past generations (rounds); our main contribution is
on how exactly to perform the mixing across generation so
that we maintain low overhead suitable for sensor nodes. In
our evaluation, we explicitly compare the security benefits
our protocol offers with the security provided inherently by
network coding.

Our contributions are:
1) We present a protocol that integrates well with Sense-

Code, as well as other protocols that employ network
coding over sensor networks, and offers increased secu-
rity at low additional complexity.

2) We experimentally evaluate its performance, using the
TOSSIM simulator [4] over several settings.

3) We offer an analysis that supports the trends we observe
experimentally.

The paper is organized as follows. First, we state our prob-
lem in Section II, and we present our encryption protocol in
Section III. Next, we build intuition on its security properties
in Section IV, and we experimentally evaluate its performance
in Section V. Section VI summarizes related work, and we
conclude with a discussion in Section VII.

II. SETUP

A. Problem Statement

We consider a sensor network of N sensor nodes and one
single collection point, the sink. The network operates in
rounds, and in each round, every node i would like to reliably
communicate a message xi, i = 1...N , to the sink. Each source
message xi is a sequence of symbols over a finite field Fq .
We assume a data collection protocol that enables network
coding; for the sink to decode the linear combinations of
source messages, in every packet an N -dimensional coding
vector FNq is appended. We also assume that our protocol
enables node overhearing; we will use SenseCode in this paper
to illustrate this [1].

SenseCode creates and maintains a tree structure in the
network for the routing of information towards the sink. Each
source node generates r packets, where r is the redundancy
factor and routes them using a tree path to the sink. Each node
having a packet to forward to a next hop along the path, before
doing so, linearly combines it in an opportunistic manner
with its own message and messages from other nodes, i.e.,
messages from its children (if any) and overheard messages
from its neighbors. Clearly, the overheard information from
neighboring nodes can be plain messages xi’s or linear com-
binations of these (uncodable and codable SenseCode packets,
respectively). The sink collects all the forwarded information
and tries to decode, so as to obtain the xi’s.

Our goal is to design a practical protocol, on top of Sense-
Code operations (Fig. 1), that enables each node to securely
communicate its messages to the sink, under the presence of
an adversary, who is described in the next section.

B. Adversary Model

We are interested in evaluating our protocol in the presence
of a passive adversary, Eve, who eavesdrops on the communi-
cation. We assume in this paper that Eve is in fact an honest
but curious sensor node, who follows the protocol but at the
same time attempts to extract information regarding the other
nodes’ messages. Any node in our network could be Eve, we
have no information regarding her location in the network.
Eve is assumed to have limited network presence, that is, she
is restricted to one (any one) location in the network, but we
do not make any assumptions about her computational and
memory capabilities.

C. Performance metrics

We are interested in a form of weak security. That is, Eve
gets no meaningful information about a specific message xi.
In particular, if xi and xk take i.i.d. binary values and Eve
receives xi ⊕ xk we consider both xi and xk to be secure
from Eve as she gets no meaningful information about them.

The reliability for a node i is the percentage of messages
that were communicated securely to the sink from node i
during the whole operation of the network, given that one
message xti is generated at each round t. It is defined as:

ρi =
secure xi

′s from any other node j

rounds
, ∀j 6= i.

The average reliability ρ, captures the performance of
our protocol with the respect to the whole network. I.e.,
ρ = avg(ρ1, . . . , ρN).

Note that our security metric is pessimistic in two ways: (i)
we consider a packet xi to be not secure even if it is secure
from all other sensor nodes in the network but one; (ii) at
every round, we implicitly assume that Eve is the node that
can at that round decode, thus we give her a strong advantage.

III. PROTOCOL DESCRIPTION

Our protocol aims to exploit the fact that each node of
the network will overhear (and have in common with the
sink) a random subset of linear combinations of the source
symbols, as dictated by the network topology and the channel
conditions. More precisely, every node and the sink share a
common collection of xi’s and linear combinations of these,
over multiple communication rounds. We can use this common
information to encrypt future data of node i from an adversary
that does not have full knowledge of the shared data.

We define the following parameters for our protocol:
• µ : number of rounds in the past from which we select

packets to be combined to create an encryption key.
• q : the field size of the vector space used.
During the rest of this section, we use the operation (a||b)

to represent the concatenation of two given vectors, a and b.

A. Data Structures

• xti: source message generated by node i at round t. The
size of each message xti is fixed and equal to L bits.

• sti: encryption key created by node i which is used at
round t.

• yti : s
t
i + xti, encrypted message of node i at round t. +

represents the addition operation over a given finite field.
• wti : encryption coefficients vector for secret key sti.

2

• pt` = (ct`||dt`) : a SenseCode packet at round t. It is a
concatenation of its coding (coefficients) vector (ct`) and
payload (dt`) as defined in [1].

dt`
4
=

N∑
j=1

ct`[j](w
t
j ||ytj) =

 N∑
j=1

ct`[j]w
t
j

 ||γt`,
where γt` =

∑N
j=1 c

t
`[j]y

t
j and ct` ∈ FNq .

• Pti : set of packets pt` overheard by node i at round t.
• Qi: a FIFO (first-in first-out) bounded queue of size µ.

Its elements are encryption keys (sti) and their encryption
coefficients (wti) at node i for the next µ rounds.

• Y: a list of all encrypted messages yti for the last µ
rounds. This list will be used for the reconstruction of
encryption key sti at the sink.

2The size of each wt
i is µ×N(log2(q)) bits.

Encryption

SenseCode

Radio

xti

(wt
i||yti)

pt` = (ct`||dt`)

Fig. 1: Protocol stack

B. Algorithm

Message creation & encryption
1) Node i at round t generates a source message xti to be

communicated to a common collecting sink.
2) Encrypted message yti = sti + xti is prepared using the

key sti pulled from the top of queue Qi at round t.
3) yti and the encryption coefficients wti of sti are encapsu-

lated into a SenseCode message (wti ||yti) which will be
communicated to the sink.

Message collection
1) At each round t, node i communicates the encapsulated

message (wti ||yti) to the sink using the SenseCode col-
lection protocol (see Fig. 1).

2) In order to decode all the encapsulated messages, the
sink waits until it receives at least N linearly indepen-
dent combinations of them. At the end of round t, the
sink tries to recover as much encapsulated message as
possible from all the packets it receives and overhears.3

3) After recovering yti and wti , the sink runs the key
reconstruction and message decryption phase to obtain
the source message xti.

Key reconstruction & message decryption at sink
1) The sink updates its list Y of encrypted messages with

the new yti .
2) Then, the sink needs to reconstruct the secret sti using

the encapsulated encryption coefficients vector wti and
the list of encrypted messages list Y as follows:

sti =

µ∑
k=1

N∑
j=1

wti [(k − 1)N + j] yt−kj (1)

3) After reconstructing the key sti, node i can obtain the
source message xti = yti − sti.

Key construction at node i
1) (Initialization) Node i initializes its key queue Qi with a

predefined set of initial (possibly insecure and all zero)
µ vectors.

2) At every round t, for each overheard packet pt` ∈
Pti , node i updates all the elements in Qi =
{(wt+1

i ||st+1
i), ..., (wt+µi ||st+µi)}, ∀k ∈ 1,2,..,µ:

wt+ki (k) = wt+ki (k) + αt`,ic
t
` (2)

st+ki = st+ki + αt`,iγ
t
`, (3)

3The payload dtl of the packets received at the sink is random linear
combinations of encapsulated messages (wt

i ||yti) of each node i ∈ 1...N .

where αt`,i ∈ Fq is the random coefficient generated
for pt` during this update by node i and wt+ki (k) =[
wt+ki [(k − 1)N + 1] . . . wt+ki [kN]

]
.

3) When a node i pulls an encryption key sti, (wti ||sti)
from the top of Qi, it pushes a new all zero element
(wt+µi ||st+µi) to the bottom of the queue. This ensures
the size of Qi is always fixed and equals to µ.

A key construction example: Let µ = 4 and suppose we are
interested in the key construction procedure at node 1, starting
from round t + 1 up to t + 4. Assume that node 1, collects
only one packet over these rounds, i.e., pt+1

l , pt+2
l , pt+3

l and
pt+4
l . Table I shows the contents of the queue Q1 at round
t+ 4. The first row represents the head of the queue, the last
row the tail, the first four columns the contents of vector wt+k1

and the last column the encryption key st+k1 . For example, at
round t + 5, the key st+5

1 is going to be removed from the
top of the queue to be used for encrypting the source message
xt+5
1 and a new key st+9

1 will be initialized and added to the
end of the queue. Once a key st+k1 is used for encryption,
its corresponding coefficients vector wt+k1 is attached to the
encrypted message yt+k1 . For simplicity, in this example we
used αt`,1 = 1,∀t,∀`.

C. Cost analysis

Memory requirements: Each node i at any given round
t has to keep the queue Qi in its memory. The size of Qi
is fixed and µ × (L + µ(N × log2(q))) bits. In other words,
the queue has µ elements of size (L + µ(N × log2(q))). An
element of the queue (wti ||sti) has an encryption key (sti) of L
bits and encryption coefficients of size µ×N × log2(q) bits.

In order to regenerate the encryption keys at a given round
t, the sink should keep a list of encrypted messages Y for
all the N nodes in the last µ rounds. The size of this list in
memory is (µ× L×N) bits.

Communication overhead: The size of a packet transmit-
ted by our protocol is ((µ+1)×N × log2(q)+L) bits, where
L is the size of a plain message xti. On the other side the size
of a Sensecode packet (without any encryption of message) is
(N × log2(q) + L) bits. In other words, encrypting messages
at the nodes costs an extra N × µ × log2(q) bits per packet
transmission.

Note that we are actually using the standard SenseCode
protocol with larger messages. We can, therefore, claim that
the number of packets transmitted in the network does not
change compared to SenseCode without encryption (we found
that larger packet sizes do not increase the packet error rates
substantially). Moreover, we can significantly compress the
coding vectors using techniques similar to [5].

Operational complexity overhead: For every overheard
packet in Pti at round t, every node i updates (an addition
operation over finite field Fq) µ vectors in its key queue Qi.
Thus, the main computational overhead introduced (per node
per round) by encrypting messages is:

|Pti | × µ additions of 2 vectors of size N × log2(q) + L

t+ k wt+k
1 st+k

1

5 ct+1
l ct+2

l ct+3
l ct+4

l γt+1
l + γt+2

l + γt+3
l + γt+4

l

6 ct+2
l ct+3

l ct+4
l γt+2

l + γt+3
l + γt+4

l

7 ct+3
l ct+4

l γt+3
l + γt+4

l

8 ct+4
l γt+4

l

TABLE I: Contents of queue Q1 at round t+ 4

On the sink side, the overhead for reconstructing all N keys
sti is N2 × µ multiplications of a vector (size L bits) and a
scalar (see Equation 1). After reconstructing the keys, sink
should compute the source messages xti, which requires an
extra N additions of 2 vectors of size L.

IV. ANALYSIS

We start our analysis by observing that the payload of all
packets sent by the protocol are linear combinations of source
messages. We can therefore uniquely represent every packet as
a vector that collects the coefficients used for linear combining.
In this section we will call this vector the coding vector of
the packet. We define the vector such that the coefficient used
to linearly combine xti is at position Nt + i of the vector.
The length of the vector is in principle unbounded, but in the
following we will always be able to think about the vector as
having a sufficient length, as it will be clear from the context.

Our analysis in the following assumes that the xti’s are
statistically independent across sources and rounds and are
uniformly distributed. This could be because we use dis-
tributed source coding or because the nature of the application
data is so. If this is not the case, we will have a corresponding
reduction in the expected secrecy as determined by the specific
correlation patterns.

We denote as Πt
i ∈ FNq the subspace spanned by the coding

vectors of the packets node i collected at round t. We define Zti
the subspace spanned by the basis vectors of {Π1

i , . . . ,Π
t
i}, Zti

represents all information that a node i can potentially collect
up to round t and therefore use to recover messages sent by
other nodes. We define Wµ

i the subspace spanned by the basis
vectors of {Πt−µ+1

i , . . . ,Πt
i}, this is the subspace from which

the encryption keys sti is chosen.
In the following we will exploit the fact that if the vector

eNt+i is not in Zt
′

j , i.e., node j cannot reconstruct Xt
i from

the linear combinations it has overheard then Xt
i is weakly

secure from node j up to time t′, i.e., H(Xt
i |Zt

′

j). To prove
this it is sufficient to observe that eNt+i can be used to extend
a base of Ztj and obtain a set of linearly independent vectors,
then observe that the corresponding linear combinations of
source messages are statistically independent, which implies
that Xt

i is statistically independent from what node j knows
and, therefore, secure. In this section we want to make two
points:
• If the subspace overheard by the adversary doesn’t con-

tain the subspace used to create the secret key of round t
on node i then with a non-zero probability the data sent
by node i will be secure even if the adversary overhears
all the packets sent in this round.

• By using linear combinations of past data to create keys
our protocol doesn’t compromise the security of the data
sent in the previous rounds.

For the first point, we define a function gti as follows:

gti(µ)
4
= min

j 6=i
[dim(Wµ

i)− dim(Wµ
i ∩ Z

t
j)].

We will show that gti(µ) determines the probability of
picking a key that makes the transmission of node i in round
t secure. The actual value of gti(µ) depends on the network
conditions. Here, we want to show that if it is bigger than
1 (i.e.the adversary does not collect everything that node i
collected) then our protocol improves the security.

We first observe that our protocol chooses keys uniformly at
random over Wµ

i . Indeed what our protocol does is to create
a linear combination with random coefficients of the packets
it has overheard. The following lemma shows that this linear
combination is distributed uniformly.

Lemma 1. Given a set of k vectors v1, . . . ,vk ∈ FNq and k
uniform and independent random variables c1, . . . , ck ∈ Fq ,
then

∑k
i=1 ci · vi is uniformly distributed over 〈v1, . . . ,vk〉.

Now we can use the following lemma to find what is the
probability that a given key is not in the subspace overheard
by the adversary as stated in Proposition 1:

Lemma 2. Let two subspaces Πi and Πj of FNq , for which
Πi 6⊆ Πj . Let also v a vector uniformly chosen in Πi. Then

Pr[v ∈ Πj] =
1

qβ
,

where β = minj [dim(Πi)− dim(Πi ∩Πj)], ∀i 6= j.

Proposition 1. An encryption key sti produced by our protocol
by node i at round t is secure by an other node j with
probability δ = 1− 1

qg
t
i
(µ)
.

Now, what remains to be proven is that by using a key that
is not in Zt−1j we actually secure the data being transmitted
at round t, against node j.

Proposition 2. If sti 6∈ Z
t−1
j then H(Xt

i |Ztj) = H(Xt
i),∀j 6= i.

Proof. Node i selects an encryption key sti at round t to
encrypt its message xti, i.e. yti = sti + xti. For simplicity we
will write the coding vectors of the packets as elements of
FNtq . Now, let vi = [wi ei], where wi ∈ FN(t−1)

q , represent
the coding vector of the key sti. Also, let b1 . . .bm a basis of
Zt−1j and assume that node j overhears all the yti for round
t. Then Ztj = 〈b1 . . .bm,v1, . . . ,vN 〉, where vectors bi have
zeros in the last N entries.

We want to show that node j cannot decode data from node
i, i.e., eN ·(t−1)+i 6∈ Ztj , ∀i 6= j. Suppose that this is not the
case, then we can find αr and βr such that:

Nt∑
k=1

(
m∑
r=1

αrbr[k] +

N∑
r=1

βrvr[k]

)
ek = eN(t−1)+i (4)

The above equation holds if:

m∑
r=1

αrbr[N(t− 1) + i] +

N∑
r=1

βrvr[N(t− 1) + i] = 1

and
Nt∑
k=1

k 6=N(t−1)+i

(
m∑
r=1

αrbr[k] +

N∑
r=1

βrvr[k]

)
ek = 0.

The first equation implies that βr = 1, for r = i, since
br[N(t − 1) + i] = 0 for all r, and vr[N(t − 1) + i] = 1
for r = i and 0 otherwise. The second equation implies that
all βr, for r 6= i, must be zero, for we will not be able to
cancel out the corresponding eN(t−1)+r term. Now, Equation
4 can be rewritten as:

Nt∑
k=1

k 6=N(t−1)+i

(
m∑
r=1

αrbr[k]vi[k]

)
ek+eN(t−1)+i = eN(t−1)+i ⇒

m∑
r=1

αrbr +

Nt∑
k=1

k 6=N(t−1)+i

vi[k]ek = 0 (5)

However, Equation 5 implies that [wi 0N] should have been
in the span of bi . . .bm, which is a contradiction. Therefore
node j cannot decode xti and so H(Xt

i |Ztj) = H(Xt
i).

In the next proposition, we argue that using an encryption
key at round t, produced by our protocol, does not compromise
the security of the data sent in previous rounds, for which the
adversary already had maximum uncertainty.

Proposition 3. If H(Xt
i |Ztj) = H(Xt

i) then H(Xt
i |Z

t+1
j) =

H(Xt
i), ∀j 6= i.

Proof. Let b1 . . .bm a basis of FNtq that spans Ztj and
c1 . . . cm a basis of FNt+1

q , where ci = [bi 0].
By assumption it holds that el 6∈ 〈b1 . . .bm〉, where el ∈

FtNq . Given that, it is straightforward to show that also el 6∈
〈c1 . . . cm〉, where el ∈ FNt+1

q , and vice versa.
Let the vector v = [w 1], where w ∈ FNtq , represent a

coding vector of the key to be used in round t+1, and assume
that el ∈ 〈c1 . . . cm,v〉. We can write:

m∑
i=1

Nt+1∑
r=1

αici[r]er +

Nt+1∑
r=1

γv[r]er = el ⇒ (6)

m∑
i=1

Nt∑
r=1

αibi[r]er +

Nt∑
r=1

γw[r]er + γeNt+1 = el. (7)

For l ≤ Nt, for Equation 7 to hold, it should be γ = 0. What
remains cannot hold, because it contradicts the assumption
el 6∈ 〈b1 . . .bm〉. For l = Nt+ 1 , Equation 7 does not hold
because by construction, the basis c1 . . . cm cannot span the
vector eNt+1. We conclude that el 6∈ 〈c1 . . . cm,v〉 ∀1 ≤ l ≤
Nt+ 1, and therefore the uncertainty about message xti after
the observation of round t+ 1 remains the same.

V. EVALUATION

A. Simulation Environment & parameters

SenseCode is implemented as a TinyOs module and tested
with the TOSSIM simulator [4]. We implemented our encryp-
tion protocol in Java, and we evaluate its performance using
the TOSSIM simulation results and the nc-utils toolbox [6].
We used a fixed field F24 for the network coding operations.
Each TOSSIM simulation consists of 100 consecutive com-
munication rounds. We consider the following topologies:

1) a 7 × 7 square grid (N = 49), with the sink located in
the middle of the grid,

2) a 3×16 rectangular grid (N = 48), with the sink located
in the middle of the short edge of the grid.

We configure each topology with two different inter-node
distances: 20 m (sparse deployment) and 10 m (dense de-
ployment), each of them yielding a different density of the
network. For all the above network deployments, we test the
performance of our scheme under the following scenarios:
• Every node is permanently present in the network.
• Node i can be in either connected or disconnected state.

We set the mean time between failures (MTBF) to 400
sec, and the mean time to repair (MTTR) to 40 sec4.

For the first scenario, we consider coded communication,
for which nodes introduce a single codable packet per round
(in [1] we describe as codable the packets that we allow the
sensor nodes to linearly combine with other packets before
forwarding them to the sink). For the second scenario, we
consider redundancy r = 2, where each node injecting in
network one uncodable and one codable packets per round.
We assume that the uncodable packet is encrypted while the
codable is not.

B. Simulation Results

We present average reliability results as a function of µ
to observe the effect of using larger windows when creating
secret keys. Note that µ = 0 corresponds to the inherent
security provided from the network coding operations in
SenseCode. We emphasize that our reliability metric (see
Section II-C) considers as secure only messages that are
secured concurrently from all possible eavesdroppers, i.e., a
communication is secure if none of the network nodes can
recover what was sent.

Fig. 2 presents the average reliability ρ as a function of
µ, for the square grid topology. We observe that our proto-
col increases the average number of secretly communicated
messages by exploiting past communications. In other words,
when we increase the parameter µ, we increase the time
window of secrecy accumulation over time. As expected, for
higher values of µ, we provide a better reliability.

For only one coded packet, we see that in a dense deploy-
ment the reliability is less, in comparison with the sparse, since
the nodes overhear more common packets, but still increases
fast with µ. For r = 2, the reliability is degraded due to fact

4Selected from [1], as a meaningful use-case for SenseCode.

sparse, 3× 16, r = 2: 79.0243%

sparse, 3× 16, only-coded: 64.4745%

sparse, 7×7, r = 2: 95.8544%

sparse, 7×7, only coded: 79.6517%

dense, 3× 16, only-coded: 76.5313%

dense, 7×7, only coded: 90.8671%

TABLE II: Measured average delivery ratio per scheme.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

µ

R
e

lia
b

ili
ty

 ρ

Sparse, systematic (r=2)

Sparse, only−coded

Dense, only−coded

Fig. 2: Reliability - 7× 7 Square Topology

that every node sends at least one uncoded SenseCode packet,
facilitating in that way the task of the adversary. Nevertheless,
our scheme achieves 20% improvement in reliability for small
values of µ.

Fig. 3 presents similar results for the rectangular topology.
In general, this topology provides less secrecy compared to
a square grid, because the information flow (collection tree)
is more concentrated to several points (nodes) in the network
compared to a square grid. Even in this challenging topology,
we provide up to 40% increase in terms of reliability for as
low as µ = 4.

Note that in both Fig. 2 and 3, our approach achieves higher
reliability as compared to µ = 0, the reliability achieved by
SenseCode alone. For completeness, we provide in Table II
the average percentage of y-packets decoded correctly to the
sink per round with each scheme.

VI. RELATED WORK

Key distribution and establishment in wireless sensor net-
works has different characteristics, requirements and limita-
tions than in traditional networks mainly due to the limited
resources on sensor nodes. As a result, the widely accepted key
management schemes for traditional networks have drawbacks
for sensor network environments [7], [8], [9].

Closer to our work is the popular in the literature scheme
of Eschenauer and Gligor (EG) [10] and follow up works (eg.
[11]), where each node is provided with a set of keys (key
ring) randomly selected from a common pool and use these as
common randomness to create keys. Like EG-based schemes,
our nodes also collect random keys, yet our randomness comes
not from pre-distribution but from the randomness of the
wireless channel conditions and topology; this enables us to
easily refresh our keys at every round.

Our work can also be seen as offering weak security through
network coding [3]; lightweight protocols have been developed

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

µ

R
e

lia
b

ili
ty

 ρ

Sparse, systematic (r=2)

Sparse, only−coded

Dense, only−coded

Fig. 3: Reliability - 3× 16 Rectangular Topology

for weak security as in [12], [13] yet not applied to sensor
networks. The work in [14] looks at security for network coded
sensor networks with keys distributed by a mobile agent that
visits the nodes.

VII. CONCLUSION

We presented the design and evaluation of a protocol that
uses previous data as one-time pad to enhance the inherent
weak security network coding offers. Our protocol operates
cost sufficiently low to be well suited for sensor network
applications.

REFERENCES

[1] L. Keller, E. Atsan, K. Argyraki, and C. Fragouli, “Sensecode: Network
coding for reliable sensor networks,” ACM Transactions on Sensor
Networks, vol. 9, no. 2, 2013.

[2] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection
tree protocol,” in Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems. ACM, 2009, pp. 1–14.

[3] K. Bhattad and K. R. Narayanan, “Weakly secure network coding,”
NetCod, Apr, 2005.

[4] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate and
scalable simulation of entire tinyos applications,” in Proceedings of the
1st international conference on Embedded networked sensor systems.
ACM, 2003, pp. 126–137.

[5] M. Jafari, L. Keller, C. Fragouli, and K. Argyraki, “Compressed net-
work coding vectors,” in Information Theory, 2009. ISIT 2009. IEEE
International Symposium on. IEEE, 2009, pp. 109–113.

[6] “Nc-utils: Network coding utilities toolbox.” [Online]. Available:
http://code.google.com/p/ncutils/

[7] C.-Y. Chen and H.-C. Chao, “A survey of key distribution in wireless
sensor networks,” Security and Communication Networks, 2011.

[8] H. Chan, A. Perrig, and D. Song, “Key distribution techniques for sensor
networks,” Wireless sensor networks, pp. 277–303, 2004.

[9] S. A. Camtepe and B. Yener, “Key distribution mechanisms for wireless
sensor networks: a survey,” Rensselaer Polytechnic Institute, Troy, New
York, Technical Report, pp. 05–07, 2005.

[10] L. Eschenauer and V. D. Gligor, “A key-management scheme for
distributed sensor networks,” in Proceedings of the 9th ACM conference
on Computer and communications security. ACM, 2002, pp. 41–47.

[11] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks,” in Security and Privacy, 2003. Proceedings. 2003
Symposium on. IEEE, 2003, pp. 197–213.

[12] P. F. Oliveira and J. Barros, “A network coding approach to secret key
distribution,” Information Forensics and Security, IEEE Transactions on,
vol. 3, no. 3, pp. 414–423, 2008.

[13] P. Zhang, Y. Jiang, C. Lin, Y. Fan, and X. Shen, “P-coding: secure
network coding against eavesdropping attacks,” in INFOCOM, 2010
Proceedings IEEE. IEEE, 2010, pp. 1–9.

[14] Y. Wei, Z. Yu, and Y. Guan, “Efficient weakly-secure network coding
schemes against wiretapping attacks,” in Network Coding (NetCod),
2010 IEEE International Symposium on. IEEE, 2010, pp. 1–6.

