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Chapter 1

Introduction

In this thesis we analyze the problem of reliably broadcasting a set of mes-
sages from a single sender to a set of receivers that are connected through
a shared medium. Efficiently broadcasting information in presence of com-
munication errors is not a trivial task because each receiver may receive a
different subset of information from the source, while transmissions have to
be planned jointly for all receivers.

The problem of reliable broadcasting of information recurs very often in
real life engineering applications. The typical setting where such problem
arise are wireless applications. When using the wireless medium all receivers
near a sender can receive at the same time the data sent by it. Sometimes we
are interested in disseminating some information reliably from such sender
to all neighbors. There exist other widely used communication media, that
are by nature broadcast, where algorithms presented in this report can be
run, for example cable television systems or communications over powerline.
Internet itself can be used as a broadcast medium if IP multicast is available.

The question we are asking in this thesis is, what are the potential ben-
efits we can gain in this problem from the use of feedback. Such benefits
would include operational complexity, reliability and delay. In this report
in particular we will focus on reliable transfer and under this constraint op-
timize for delay. Reliable transfer is required when all the data has to be
received. An example is the case of dissemination of firmware updates of
networked devices, shipping of high quality video or mirroring of data for
backup purposes. Such an approach is in contrast with for instance real
time video or audio communications where the fact that there are errors in
the communication is tolerated.

Broadcasting has been studied in the literature, mainly along the follow-
ing three directions:

1. Work in scheduling examines offline and online algorithms, where feed-
back is available from the destinations to the source, but the source
does not employ coding. Performance criteria include achievable rate
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8 Introduction

and delay, see for example [7].

2. For applications such as satellite communications, where use of feed-
back might be impractical, elegant forward error correction schemes
have been proposed, such as Raptor codes [3] and LT codes [4]. Under
the constraint of not using feedback, these codes achieve rate optimal-
ity, rate adaptability, and minimize encoding and decoding complexity.

3. Theoretical work has examined use of feedback to achieve the optimal
rate and zero probability of error [8] over broadcast erasure channels.

In this report we present results, both theoretical and experimental, on
the performance that can be achieved using linear coding techniques that ex-
ploit feedback. In the theoretical part we analyze optimal algorithms: some
results already known are summarized and some new one are presented. In
the experimental part we present some heuristic algorithms and we exten-
sively analyze their performance using simulations. An article with results
presented in this report has been submitted to the NetCod ’08 workshop.

In Chapter 2 we formally introduce the problem and the model; in the
same chapter we present the linear coding approach that will be used in our
algorithms, we show how it can be used in our context and we discuss the
difference between online and offline algorithms. In Chapter 3 we show some
results about optimal codes. Finally in Chapter 4 we propose algorithms
and we analyze their performance using extensive simulations.



Chapter 2

Problem statement

2.1 Model

A source S has M messages m1, . . . , mM of k bits and wants to transmit
them reliably to N receivers. By reliable transmission we mean that each
message is received by each receiver with zero error probability. The mes-
sages are randomly chosen from the set of all possible k bits messages and
therefore the receivers don’t have a priori any information on them.

Whenever the source sends a packet the receivers observe it through N
independent erasure channels, one for each receiver. For simplicity we are
going to assume these channels are identical. A receiver gets the packet
that has been sent with probability 1 − p, otherwise it receives an erasure
symbol. The event of having an erasure on a specific receiver and packet is
independent of the event of having it on others and its probability p is time
invariant.

Definition 2.1.1. An erasure pattern E is a realization of the N erasure
channels.

Each receiver has an error-free feedback channel of infinite capacity that
connects it to the source. Such type of channels is not realistic, but practical
protocols presented in this report can work by just sending one bit of feed-
back acknowledging each packet transmission, as this is the only information
not known at the sender side. A more verbose feedback can be useful when
the protocol offloads some computations to the receivers.

Definition 2.1.2. A broadcast schedule is a list of packets that are sent
consecutively by the source.

In this report we always consider that the time is slotted. At each time
step the source can send one message and all the receivers can send feedback
based on whether they received the message. The variable t indicates the
current time slot, t = 1 being the time slot when the first message is sent
from the source.

9



10 Problem statement

2.2 Linear coding approach

In this report we present different ways to construct broadcast schedules
that send linear combinations of messages. Messages can be represented
by elements of F2k . Each packet transmitted contains a linear combination
of messages, called v̄, built using coefficients from a field Fq with q = 2m

where m divides k. The field size q is called alphabet size [1]. Each possible
v̄ can be mapped to a coding vector v, an element of FM

q containing the
coefficients used to build it. A packet is a couple (v, v̄). We denote Πi the
subspace of FM

q spanned by the coding vectors collected by receiver i.
In order to recover the initial set of messages the receiver has to solve

a set of linear equations. Let p1 = (v1, v̄1), . . . , pt = (vt, v̄t) the packets
received up to time t by some receiver. The receiver can recover the initial
messages m1, . . . , mM by solving the following equation set:




v′1
. . .
v′t


 ·




m1

. . .
mM


 =




v̄1

. . .
vt


 (2.1)

This system of equations can be solved only if the rank of the matrix of
coefficients is M . It is possible however that for l messages mi1 , .., mil and
for all 0 < j ≤ t all coefficient (v′j)ik with 0 < k ≤ l are zero. In this case
if the rank of the matrix of coefficients is M − l we can partially solve the
system to find M − l messages.

The complexity of decoding linear codes depends mainly on two factors.
One source of complexity is the alphabet size: operations over a field Fq

of size q = 2n require with typical algorithms O(n2) binary operations [1].
Another source of complexity is the kind of linear combinations that are
received. If the set of messages that are being decoded is small the number
of columns of the decoding matrix is small and therefore inverting it requires
less operations. A coding scheme that wants to minimize this complexity
tries to make sure that at each packet reception it is possible to decode a
new message. This is because when a message has been decoded it can be
removed from an incoming packet with a simple subtraction. Therefore the
decoding matrix coefficients on the column corresponding to such message
can be set to zero thus simplifying the problem. In Appendix A we show an
algorithm that allows to decode incrementally the received packet and has
a worst case complexity of O(M3) operations. Its instantaneous complexity
depends on how many messages are actively decoded at the same time.

We now present a definition and a lemma useful in the analysis of our
algorithms.

Definition 2.2.1. A packet innovative for receiver Ri is a packet that con-
tains a coding vector linearly independent from the coding vectors previously
received by Ri.
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The concept of innovative packet is important when we try to maximize
the rate of algorithms: if an algorithm can always send innovative packets
for all receivers it achieves the capacity of the erasure channel.

The following lemma helps understand when a receiver can decode a
message:

Lemma 2.2.1. A node Ri can decode the message mj if and only if ej ∈ Πi

with Πi the space spanned by the coding vectors received by Ri and ej the
j-th vector of the canonical basis.

Proof. If ej ∈ Πi, ej can be expressed as a linear combination of coding vec-
tors received by Ri, by using the same coefficient it is possible to reconstruct
mj from the content of the packets Ri has received.

2.3 Performance metrics

The performance of scheduling algorithms can be analyzed from different
points of view. In this report we concentrate mainly on two aspects: delay
and complexity. We are interested in finding algorithms that find schedules
that have a rate as high as possible and that allow to decode messages at
a constant rate. The factors that affect the performance of the algorithms
are M , N and p.

This report analyzes various algorithms that create broadcasting sched-
ules that use linear coding. After receiving a packet a receiver could not be
able to decode a message for two reasons: the received packet is not inno-
vative or the receiver has not collected enough packets to solve a new part
of the equation system. We define formally delay as:

Definition 2.3.1. The delay Di that a receiver Ri experiences is defined as
the number of packets that are successfully received by Ri but do not allow
to decode messages that couldn’t be decoded before receiving them.

This definition of delay is based on the number of packets successfully
received therefore even in the case of a high probability of erasure it could
be possible to have a delay equal to zero.

This delay measure penalizes two undesirable behaviors of algorithms:
sending many packets that are useless for most of the receivers and send-
ing linear combinations of messages that cannot be decoded when received.
These two are not the only undesirable behaviors; another important charac-
teristic of schedules that could be considered is the order in which messages
can be decoded. This is important if the data is consumed sequentially at
the receiver. It is less important if the receiver has to collect all the messages
before using them or in the case of a photo or a video where we can start
partially reconstructing the image from any subset of messages. Another
metric that could be optimized is the time between a message is sent for
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the first time in a linear combination and the time when such a message
is decoded. This metric is similar to the previous one and is important for
real time applications. Another characteristic that could be interesting for
an algorithm is that all packets on all receivers can be decoded using other
packets that have been recently received. An algorithm that ensures this
property could support very a large or even infinite number of messages.

From this discussion on delay we can define two classifications of algo-
rithms that try to optimize the delay metric:

Definition 2.3.2. An algorithm is rate optimal if for any erasure pattern it
produces a broadcast schedule in which a receiver that has received M packets
can decode all M messages.

Definition 2.3.3. An algorithm is decoding delay optimal if for any erasure
pattern it produces a broadcast schedule in which any receiver can from any
received packet immediately decode at least one of the source messages.

If an algorithm is both rate and decoding delay optimal then Dw = 0.
In our theoretical analysis we concentrate on rate optimal algorithms.

Under this constraint we attempt to find decoding delay optimal algorithms.
We will see that it is not always possible to find an algorithm that is optimal
accordingly to both criteria and therefore the optimal algorithm may not
require to satisfy both of these constraints.

In order to evaluate the performance of the algorithm for all receivers
we define four aggregated versions of the delay metric. The first is the total
delay defined as:

Dt ,
N∑

i=1

Di

This metric directly relates to the average delay:

D̄ , 1
N

N∑

i=1

Di =
1
N
Dt

The third aggregate metric is the worst case delay. This metric is defined
as:

Dw , max
i
Di.

This metric can indicate how the delay is distributed among the different
receivers. If this metric has a value very close to Dt then the delay is being
concentrated on a single receiver; if it is very close to D̄ then the delay is
equally distributed to all receivers.
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Figure 2.1: Graph representing an erasure pattern for five time slots

In the simulations we use the median delay. We use this aggregated met-
ric because it is possible to derive the confidence intervals without knowing
the underlying distribution. The median delay is defined as:

Dm , mediani Di.

Different algorithms may result in different values for Dt (respectively
Dw); we say that a particular value of Dt or Dw is optimal for a given erasure
pattern, if this is the minimal value achievable by all possible rate optimal
transmission schemes.

2.4 Taxonomy of scheduling algorithms

An erasure pattern can be represented, as described in [1], by a graph. Such
graph contains one vertex that represents the source and N vertices that
represent the receivers. Source and receivers are connected through vertices
corresponding to time slots. In each time slot the source sends a packet. An
edge between a time slot and a receiver exists if and only if the receiver gets
the packet sent during such time slot. Figure 2.1 represent the graph for a
specific erasure pattern.

Depending on the feedback information required by algorithms to build
a broadcast schedule we can classify them in three classes:

• Forward Error Correction (FEC): They do not require access to any
feedback information. They can achieve rate optimality asymptoti-
cally in the number of messages M [3][4]. They have however some
drawbacks. The first is that to achieve rate optimality many messages
have to be linearly encoded therefore the decoding delay is usually
large. Another issue is that usually decoding is much more complex
than using other kind of algorithms that use feedback.



14 Problem statement

• Online Algorithms: They use the feedback information produced by
the receivers until the reception of the last packet. Such algorithms
try to maximize the expected performance.

• Offline Algorithms: They use perfect knowledge of the whole erasure
pattern. Such information is not available in our model but they can
be very useful to evaluate a bound for performance of any algorithm.
This kind of algorithms can be employed if the erasures can be forecast,
for instance in a network where traffic is scheduled offline.

2.5 Broadcast scheduling as network coding problem

In [1] it has been shown that it is possible to map the problem of finding a
rate optimal broadcast schedule to a problem of network coding, i.e., finding
a scheme to multicast M streams from a source to N receivers through a
network where nodes can linearly recode streams. The graph representing
the erasure pattern can be seen as a fixed network with links of unit capacity.
Each message can be viewed as a stream of information. The source of the
streams is the node corresponding to the sender. The constraint imposing
that the receivers want to receive all M streams directly maps to the fact
that the receivers want to receive all M messages. The linear combination
received in each packet from the receivers corresponds to the linear combi-
nation of streams received through the incoming link from each time slot
node to each receiver node. Since they receive only one stream, nodes that
corresponds to a time slot are forced to send the same information to all
receivers: this stream corresponds to the contents of the packet. The fol-
lowing theorem assures that if the min-cut from the source to each receiver
is at least M it is possible to deliver the M streams at the same time to the
N receivers.

Theorem 2.5.1. (Main network coding theorem) Consider a directed acyclic
graph G = (V, E) with unit capacity edges, h unit rate sources located on the
same vertex of the graph and N receivers. Assume that the value of the
min-cut to each receiver is h. Then there exists a multicast transmission
scheme over a large enough finite field Fq, in which intermediate network
nodes linearly combine their incoming information symbols over Fq, that
delivers the information from the sources simultaneously to each receiver at
a rate equal to h. [2]

The theorem however doesn’t state what is the complexity of finding
such multicast scheme and doesn’t clearly indicate the minimal field size
over which coding operations have to be done. Answers to some of these
questions are presented in the theoretical part of this report for our specific
network.



Chapter 3

Theoretical analysis

In this chapter we present our theoretical results on optimal codes. In
the first section we present a result from [1] that discusses the required
field size for rate optimal algorithms. The field size, as mentioned earlier,
affects the decoding complexity. Then we introduce two online algorithms
described in [6] and [5] that, when N < 3 are both rate and delay optimal.
In the successive section we show that for N = 3 an algorithm that achieves
both rate and decoding delay optimality requires some knowledge about the
future. In the last section we prove that when N > 3 there exist some
erasures patterns where the total delay is bounded away from zero even
using offline algorithms.

3.1 Finite field size required for rate optimal algo-
rithms

The following theorem presented in [1] shows that online rate optimal lin-
ear code algorithms that operate with finite fields exist provided that the
alphabet size is large enough. Moreover such algorithms have a reasonable
complexity and scale well with the number of receivers.

Theorem 3.1.1. Assuming perfect feedback and no CSI, a rate optimal code
may require encoding operations over a finite field of size N , where N is the
number of receivers.

Proof. Assume that we have two messages m1 and m2 to transmit to N
receivers. Packet coefficients will be chosen from a space F2

q . We are inter-
ested in determining a lower bound to the alphabet size that has to be used
in oder to ensure rate optimality. We can consider only vectors in the set
A = {[01], [10], [1αi] for 0 < i ≤ q − 1} with α a primitive element of Fq

because any other vector is linearly dependent on one of these. At transmis-
sion t we only know the erasures up to t− 1. We will show that in this case

15



16 Theoretical analysis

the optimal code may need to use an alphabet of size N . Indeed consider
the following sequence of realizations:

• The sender uses the coding vector [01]. Only the receiver R1 receives
it successfully.

• The sender now needs to use a different vector in the set A, to ensure
that R1 receives an innovative packet. Assume that only R2 receives
this second packet.

• Continuing along these lines, at transmission k, with 3 ≤ k ≤ N+1 the
sender needs to use a different vector from A from the k−1 previously
employed, to ensure that receivers R1, . . . , Rk−1 do not receive the
same packet twice. Thus the set A needs to have size q + 1 > N + 1

Theorem 3.1.2. Assuming perfect feedback and no CSI, there exist poly-
nomial time algorithms to construct codes that use an alphabet size of size
N .

Proof. We can simply use an adaptation of the linear flow algorithm pro-
posed in [9]. This algorithm maintains for each receiver Rj a set of received
coding vectors, that is updated as the algorithm evolves. To assign a cod-
ing vector at transmission t, we can assume conservatively that all receivers
(that have not yet received the min-cut value, i.e. that have not yet finished)
are going to successfully receive the transmitted packet. Using the feedback
information, we can then simply update the sets of the receivers that indeed
received this transmission.

3.2 Optimal algorithm for N < 3

In the literature it has already been shown that for N < 3 there exist online
algorithms that achieve both rate and decoding delay optimality:

• For N = 1 the problem reduces to coding for a single erasure channel.
The well known ARQ (Automatic Repeat reQuest) algorithm that
repeats each packet until is received achieves both rate and decoding
delay optimality.

• For N = 2 Algorithm 1 can be used to achieve optimality [5]. It works
as follows: the sender maintains for each receiver a list of messages Si

that has been received only by that receiver. When it has to choose a
new packet if possible it chooses a linear combination of one message
from each set. Such packet is instantly decodable by both receivers
because both have already received one of the two messages. In the
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case one of the two sets S1 or S2 is empty the sender sends a message
that has never been sent before. It is possible to find such message
until one of the two receivers has received all the messages, at that
point the transmissions for the remaining receiver can be scheduled as
in the case of N = 1.

Algorithm 1 Optimal algorithm for N = 2
procedure Broadcast({mi}i=1..M )

U ← {mi}i=1..M

S1 ← ∅
S2 ← ∅
while R1 and R2 have not received all messages do

if S1 = ∅ ∨ S2 = ∅ then
pick a message mi from U
send the packet p = (ei,mi)
if R1 has received p then

S1 ← S1 ∪ {mi}
end if
if R2 has received p then

S2 ← S2 ∪ {mi}
end if

else
pick a message mi from S1

pick a message mj from S2

send the packet p = (ei + ej ,mi + mj)
if R1 has received p then

S1 ← S1 ∪ {mj}
end if
if R2 has received p then

S2 ← S2 ∪ {mi}
end if

end if
S1 ← S1 − (S1 ∩ S2)
S2 ← S2 − (S1 ∩ S2)

end while
for mi ∈ Sj where Sj is the receiver that has finished do

send the packet p = (ei,mi) until Rj receivers it
end for

end procedure
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3.3 Optimal algorithm for N = 3

The next theorem proves that for N = 3 there exists an offline algorithm
that can achieve both rate and decoding delay optimality, thus results in
delay 0 for every receiver.

Theorem 3.3.1. There exists a polynomial time offline algorithm that can
find an optimal schedule achieving Dw = 0 for N = 3. This algorithm needs
to know only the erasures that will affect the next packet, and uses binary
operations.

Proof. Let p(t) denote the packet the source sends at time t. Let BS(t) be
the set of messages that the source has used to build the packets up to time
t−1, and let Si(t) ⊆ BS(t) be the subset of the BS(t) messages that node Ri

has not decoded, before the transmission of packet p(t). Moreover, define
Sij(t) , Si(t) ∩ Sj(t). For simplicity of notation, we may omit the time
index t when there is no confusion. At t = 1, before transmissions begin,
BS = S1 = S2 = S3 = ∅. We create the packet p(t) to be transmitted at
time t as follows. We distinguish three cases:

1. Assume that only one node Ri receives p(t). Then

a) If Si(t) = ∅, then we select p(t) = (enew,mnew) with mnew /∈
BS(t). We update BS(t + 1) = BS(t) ∪ {mnew}, Sj(t + 1) =
Sj(t) ∪ {mnew} for j 6= i, and Sjk(t + 1) = Sjk(t) ∪ {mnew} for
j, k 6= i.

b) Otherwise, transmit p(t) = (eold,mold) with mold ∈ Si(t), and
update Si(t + 1) = Si(t) \ {mold}. Also, if mold ∈ Sij(t), update
Sij(t + 1) = Sij \ {mold} for j 6= i.

2. Assume two nodes Ri and Rj receive p(t). Then

a) If Si(t) = ∅ or Sj(t) = ∅, transmit p(t) = (enew,mnew) with
mnew /∈ BS(t), and update BS(t + 1) = BS(t) ∪ {mnew}, Sk(t +
1) = Sk(t) ∪ {mnew} for k 6= i, j.

b) Otherwise, if Sij(t) 6= ∅, transmit packet p = (eold,mold) with
mold ∈ Sij , while if Sij(t) = ∅ transmit p(t) = (ei + ej ,mi + mj)
with mi ∈ Si and mj ∈ Sj .

3. Assume all three nodes successfully receive the transmitted packet.
We then send p(t) = (enew, mnew) with mnew /∈ BS(t). Sending a new
message is the only choice, because this algorithm belongs to the class
of algorithms described by Proposition 3.4.1 at the end of the next
section, and thus there exists at least one receiver Ri with Si = ∅.
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Once one of the three receivers has received all M packets, we can use
the optimal algorithm for N = 2 receivers. Note that the most computa-
tionally intensive task at each step of the described algorithm, is the search
of whether m ∈ Sij(t). Since Sij(t) has size at most M , the search can be
performed in O(M log M) operations.

Unfortunately it is not possible to build an online algorithm that is at
the same time rate and decoding delay optimal. The following lemma proves
this result:

Lemma 3.3.1. There exist no online algorithm that is rate and decoding
delay optimal for N > 2 and M ≥ 2

Proof. A simple example can show that some patterns incur at least one
delay. Consider the first two transmissions and suppose the first packet is
received only by receiver R1 and the second packet only by receiver R2. Any
rate optimal algorithm has to send two different packets at each transmission
and any decoding delay optimal algorithm has to send one message per
packet to make it decodable by all receivers. The next M − 2 packets are
received by all receivers. Like the previous ones they have to contain only one
new message. The M +1 packet has to be a linear combination of messages
in order to make the scheduling rate optimal for R1 and R2, but no linear
combination can be decoded by all the receivers, so depending on the choice
of the algorithm it is possible to find an erasure pattern that delivers the
linear combination to the receiver that can’t decode and therefore there will
be at least a delay of 1 on one receiver.

We show now that the greedy algorithm that has been presented for
N = 2 has a worst case performance if used with N = 3 of the order of
M . Thus it performs equally bad, with respect to this metric, as FEC
schemes. Before we have to introduce a lemma describing a constraint that
rate optimal linear coding algorithms have to satisfy. The notation Π1 ∪Π2

and Π1 ∩Π2 is used to denote the common span and the intersection of two
subspaces Π1 and Π2, respectively.

Lemma 3.3.2. Let Π1 denote the subspace spanned by the coding vectors
< v1 . . . vt1 > receiver Rj has collected up to time t1, and Π2 the subspace
spanned by the coding vectors < vt1+1 . . . vt2 > receiver Rj collects between
times t1 + 1 and t2. In a rate optimal scheme, if ei ∈ Π1, then ei /∈ Π2, for
all i, t1 < M and t2 ≤M .

Proof. Assume the condition does not hold. This implies that dim(Π1 ∩
Π2) > 0 and therefore dim(Π1∪Π2) < t2, which contradicts rate optimality.

Theorem 3.3.2. The greedy online algorithm with N = 3 has a worst case
performance of at least M

2 .
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Proof. Consider an erasure pattern in which the first M
2 packets are received

only by R1, the next M
2 packets are received only by R2 and the following

M
2 packets are received by all three nodes. After M packets have been sent,
R1 and R2 have decoded exactly two disjoint sets of M

2 messages and R3

has still not received any packet. According to Lemma 3.3.2 no message
already decoded by some receiver can be decoded by R3. Therefore he will
not decode until M

2 packets have been sent to R1 and R2. The delay for R3

is therefore M
2 .

3.4 Properties of the optimal algorithm when N > 3

As we have seen in the previous section for N > 2 the delay of online
algorithms cannot be zero, while offline algorithms can still be rate and
decoding delay optimal. In this section we show that for N > 3 this is not
the case, more specifically we present some results that prove that when
N > 3 even offline algorithms cannot have zero delay. We show that if we
force rate optimality the delay for some erasure patters is even O(M), i.e.
the same that can be achieved using FEC codes.

In this section we always assume that M = 2k for some positive integer
k ≥ 2. Consider the following erasure pattern. For 1 ≤ j ≤ 4, let πj

be the time period corresponding to transmissions (j − 1) ·M/2 + 1 up to
j ·M/2. Each receiver receives every packet sent during the following periods
and receives nothing during the other periods: R1 receives in π1 and π2,
R2 in π1 and π3, R3 in π2 and π3, and R4 in π3 and π4. The resulting
erasure pattern is depicted in Table 3.1 for M = 4; we will call this pattern
E, the dependence on M is implied. Since we only consider rate optimal
schemes, no receiver requires further transmissions after time 2M since each
has already collected M packets by then.

The first result shows that there exits an erasure patter with N = 4 and
M even where the worst case bound O(M) is achieved.

Lemma 3.4.1. Consider N = 4 receivers that want to receive messages
m1, ..., mM with M = 2k. For the erasure pattern E and any rate optimal
transmission scheme

Dt ≥M/2. (3.1)

A transmission scheme that achieves the equality above is depicted in
Table 3.2 for M = 4 (generalizing for M = 2k is straightforward).

Proof. Let Π1, . . . ,Π4 be the subspaces generated by the coding vector in
the packets the source transmits during π1, . . . , π4. Also, let α1, α2 ≥ 0 be
the delay R1 experiences during π1, π2 respectively, β1, β2 ≥ 0 the delay R2

experiences during π1, π3 respectively, γ1, γ2 ≥ 0 the delay R3 experiences
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Time slot R1 R2 R3 R4

1 – – x x
2 – – x x
3 – x – x
4 – x – x
5 x – – –
6 x – – –
7 x x x –
8 x x x –

Table 3.1: Erasure pattern for N = 4, and M = 4, where “x”
denotes erasure, and “–” successful reception.

during π2, π3 respectively, and δ1, δ2 ≥ 0 the delay R4 experiences during
π3, π4 respectively. Then α1 = β1 since R1 and R2 both receive Π1 during
π1 and this is the first period they receive any packets. However, it could
be γ1 > 0 while α2 = 0 since R1 has already received some packets in π1

hence might be able to decode messages from Π2 that R3 can not. From
rate optimality it holds that:

(i) Π1 ∪Π2 = FM
q , Π1 ∪Π3 = FM

q , and Π2 ∪Π3 = FM
q , and

(ii) Πi ∩Πj = 0.

Let Ek , {ei} ⊆ Πk be the set of {ei} vectors contained in Πk, k =
1, . . . , 3. Then:

(iii) Ei ∩ Ej = 0 from (ii),

(iv) α1 = β1 ≥ M
2 − |E1|, γ1 ≥ M

2 − |E2|, δ1 ≥ M
2 − |E3| (because R1, R2

observe only Π1, R3 only Π2 and R4 only Π3), and

(v) |E1|+ |E2|+ |E3| ≤M .

Since Dt = α1 + β1 + α2 + γ1 + β2 + γ2 + δ1 + δ2, we have

Dt ≥ α1 + β1 + γ1 + δ1 (3.2)

≥ 2(
M

2
− |E1|) + (

M

2
− |E2|) + (

M

2
− |E3|)

= 2M − |E1| − (|E1|+ |E2|+ |E3|)
≥ M

2
.
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where the first inequality follows from α2, β2, γ2, δ2 ≥ 0, the second from
(iv), and the last from |E1| ≤M/2 and (v).

Equation (3.2) further yields the following lower bound for the total
delay of R2, R3 and R4.

Corollary 3.4.1. The total delay of R2, R3 and R4 is at least M/2 under
any rate optimal transmission scheme for E.

We conclude that for the transmissions schemes that achieve equality for
(3.1), it must hold that α1 = 0. This implies β1 = 0 as well; since achieving
the lower bound in (3.1) also requires α2 = β2 = γ2 = δ2 = 0, we obtain the
following corollary.

Corollary 3.4.2. Any rate optimal transmission scheme that optimizes Dt

for the erasure pattern E satisfies

γ1 + δ1 = M/2.

Intuitively this corollary states that delay introduced in π1 is more costly
because they delay two receivers (R1 and R2).

Corollary 3.4.1 refines the simple lower bound of M/8 for Dw provided
by Lemma 3.4.1 to dM/6e. It is now clear from Corollary 3.4.2 that for
the transmission schemes that achieve the optimal Dt, Dw exceeds the lower
bound of dM/6e. However, Table 3.3 depicts a transmission scheme that
achieves Dw = dM/6e for M = 8 (generalizing for any M = 2k is straight-
forward). Hence we obtain the following corollary.

Corollary 3.4.3. Consider N = 4 receivers that want to receive messages
m1, ..mM with M = 2k. For the erasure pattern E and any rate optimal
transmission scheme

Dw ≥ dM/6e. (3.3)

By Corollary 3.4.1, the schemes that achieve the optimal Dw satisfy the
following property.

Corollary 3.4.4. Any rate optimal transmission scheme that optimizes Dw

for the erasure pattern E satisfies

bM/6c+ dM/6e ≤ β1 + γ1 ≤ 2 · dM/6e.

Observe that the total delay of any of the above schemes exceeds the
total delay of any of the schemes described by Corollary 3.4.2 by at least
bM/6c. This implies that depending on the measure of delay we wish to
minimize, different strategies should be considered.

Besides its interest for the study of offline algorithms, the erasure pattern
E is also worth studying because it can model a dynamic scenario where new
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Time slot R1 R2 R3 R4

1 e1 e1 x x
2 e2 e2 x x
3 e3 x e3 x
4 e4 x e4 x
5 x e1 ⊕ e3 e1 ⊕ e3 e1 ⊕ e3

6 x e2 ⊕ e4 e2 ⊕ e4 e2 ⊕ e4

7 x x x e1

8 x x x e2

Table 3.2: Coding vectors of the optimal schedule for Dt for
erasure pattern in Table 3.1.

Time slot R1 R2 R3 R4

1 e1 ⊕ e2 e1 ⊕ e2 x x
2 e3 e3 x x
3 e4 e4 x x
4 e5 e5 x x
5 e3 ⊕ e6 x e3 ⊕ e6 x
6 e4 ⊕ e7 x e4 ⊕ e7 x
7 e1 x e1 x
8 e8 x e8 x
9 x e2 e2 e2

10 x e6 e6 e6

11 x e7 e7 e7

12 x e5 ⊕ e8 e5 ⊕ e8 e5 ⊕ e8

13 x x x e5

14 x x x e4

15 x x x e3

16 x x x e1

Table 3.3: Coding vectors of the optimal schedule for Dw for
erasure pattern E and M = 8.

receivers join the system at different times and we do not want to penalize
them with very long delay.

It is worth mentioning here that the algorithm described in the proof
of Theorem 1 does not readily generalize to the optimal offline solution for
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N > 3 (e.g., see Tables 3.4 and 3.5). It is interesting to understand why
this algorithm succeeds for N = 3 but fails for N = 4. The “problem”
occurs when three receivers successfully receive the transmitted packet. In
this case, we can always find a packet such that at least two receivers can
decode, but we cannot always find a packet so that all three receivers decode
(e.g., see Table 3.1).

Time slot Packet sent R1 R2 R3 R4

1 e1 e1 e1 x e1

2 e2 e1,e2 x x e1,e2

3 e3 x e1,e3 x e1,e2,e3

4 e1 x x e1 x
5 e2 ⊕ e3 e1,e2,e3 e1,e2,e3 e1,e2 ⊕ e3 x
6 e2 x x e1,e2, e3 x

Table 3.4: Coding vectors selected by greedy (delay 1).

Time slot Packet sent R1 R2 R3 R4

1 e1 e1 e1 x e1

2 e2 e1,e2 x x e1,e2

3 e3 x e1,e3 x e1,e2,e3

4 e2 x x e2 x
5 e2 ⊕ e3 e1,e2,e3 e1,e2,e3 e2, e3 x
6 e1 x x e1,e2, e3 x

Table 3.5: Coding vectors of the optimal schedule (delay 0).

We conclude this section with a proposition that shows that for any N ,
we can have a receiver that experiences zero delay.

Proposition 3.4.1. There exists a rate optimal offline algorithm where at
least one receiver has received all the information the source has transmitted.

Proof. Let p(t) denote the packet the source sends at time t. Let ΠS(t) be
the subspace spanned by the coding vectors contained in the packets that
the source S has transmitted, and Πi(t) ⊆ ΠS(t) the subspace generated
by the coding vectors received by destination Ri, before the transmission
at time t. We will prove that, provided dim(ΠS(t)) < M , there exists
at least one receiver such that ΠS(t) = Πi(t). In other words, the set
R∗(t) = {Ri ∈ receivers |Πi(t) = ΠS(t)} is not empty. Our proof uses
induction. For t = 1, ΠS(t) = Πi(t) = {0}, and the condition is satisfied.
Assume the condition holds at time t. Then we distinguish two cases:
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• There exists a receiver Ri ∈ R∗(t) that receives p(t). Clearly a rate
optimal code will then need to send a packet p(t) = (ek,mk) with
mk /∈ ΠS(t). We will then have that

ΠS(t + 1) = ΠS(t) ∪mk = Πi(t) ∪mk = Πi(t + 1)

and Ri will still belong in R∗(t + 1).

• There does not exist a receiver Ri ∈ R∗(t) that receives p(t). Then,
we can select a packet p(t) = (ek,mk) with mk ∈ ΠS(t) that brings
innovative information to all receivers. Note that ΠS(t) = ΠS(t + 1),
and as a result, R∗(t) ⊆ R∗(t + 1).





Chapter 4

Empirical analysis of heuristic
algorithms

In this chapter we first present two variations of the random network coding
algorithm, a well known FEC algorithm, that are used as benchmarks in our
performance evaluation. Then we present three decoding delay optimal al-
gorithms, one that doesn’t use any linear coding, one that opportunistically
sends instantly decodable linear combinations chosen randomly and one that
chooses the messages to be encoded such that receivers that are experienc-
ing more delay are helped. We also present a rate optimal algorithm that
tries to choose messages to be encoded such that the packets are instantly
decodable by as many receivers as possible. Since we define the delay at a
receiver to be the sum of decoding delay and delay due to useless packets,
it is not surprising that none of the previous algorithms, i.e. neither the
rate optimal nor the decoding delay optimal, perform consistently better for
all ranges of parameters of our setup, as we show in the section devoted to
simulation results.

In order to find an algorithm that takes into account both these sources
of delay, we propose a scheme that is neither rate optimal nor decoding
delay optimal but tries instead to build packets that generate delay on as
few receivers as possible. It does this by adding a message in the linear
combination only if the cost, measured in terms of delay introduced, is less
than the gain, measured in delay removed.

The algorithms presented here incur very different decoding complex-
ity to the receivers. In particular, the decoding delay optimal algorithms
impose low complexity as the packets can be immediately decoded at the
receivers, hence do not involve solving systems of equations. On the other
hand, the rate optimal and the cost driven algorithms could be more com-
putationally challenging but no worse than the systematic random network
coding algorithm.

Finally, it should be clear that the heuristics presented here are still

27
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perfectible. The cost driven approach clearly shows that choosing algorithms
that do not emphatically force rate and decoding delay optimality can be
rewarding.

4.1 Standard and systematic random network coding

These two algorithms use the standard random network coding approach:
at each time step they send a random linear combination of all messages.
When the underlying field is large enough any M random vectors are linearly
independent w.h.p., hence this transmission scheme is rate optimal w.h.p.
Feedback information can be used to ensure rate optimality with smaller
fields.

For the standard random network coding the expected delay of each
receiver is approximately M − 1: rarely messages can be decoded before the
last packet is received.

The systematic random network coding algorithm differs from the stan-
dard one because it first sends all M messages uncoded. Thus each receiver
receives an average of (1−p)M uncoded messages, hence only needs to delay
(i.e., is not able to decode) during approximately pM − 1 time slots.

4.2 Decoding delay optimal algorithms

We present three different decoding-delay optimal algorithms, with increas-
ing complexity:

Simple repetition algorithm This algorithm uses an approach similar to
ARQ (Automatic Repeat reQuest) and operates in rounds. At the beginning
of each round, the algorithm uses the feedback information to compute a
set of messages Q that have not yet been received by at least one node;
these messages are ordered according to some criterion (in our simulations
we just send a random permutation of the messages) and are then sent
uncoded during the round. The round will last |Q| time slots. The algorithm
ends when the computed Q is empty at the beginning of some round. This
algorithm is not rate optimal for N > 1.

Random opportunistic algorithm This algorithm uses an opportunistic
approach to improve the performance of the previous algorithm. Like COPE
[10] it sends packets that can be immediately decoded by all receivers. Thus
it never incurs decoding delay. However, it is not necessarily rate optimal
since it might not always be possible to select a packet that is both innovative
for all receivers and instantly decodable. Hence it might incur delay due to
reception of useless packets.



4.3 Rate optimal algorithm 29

The algorithm works in rounds and uses coefficients from F2. Like the
simple repetition algorithm, at the beginning of each round it builds the
set Q of messages that have not yet been received by at least one node.
The algorithm then chooses each packet c to be sent as follows. First, it
removes an element mq from Q at random and sets c = (eq,mq). Then it
goes (in some order) over every message mr that is still needed by some
node. In particular, mr might be a message that was already transmitted
and removed from Q during the round but one of the nodes that needed
it experienced an erasure during the transmission. Let v the coding vector
associated to c and v̄ the linear combination of messages associated to c.
The algorithm sets c = (er + v, v̄ + mr) if v̄ + mr is decodable by all nodes
that can decode c. Each time a packet is added to c the algorithm removes
it from Q if it is present.

Highest delay first (HDF) opportunistic algorithm This algorithm op-
erates similarly to the previous one but instead of choosing randomly the
packet to be sent it always starts by choosing a message that is useful for the
receiver that is experiencing the worst delay. To decide among the different
messages that satisfy this condition it chooses the one that is required by
most receivers. Then it selects the receiver with the highest delay that will
not receive something useful and it chooses a message that can be added to
the packet being sent without making it non decodable by some receiver.
This procedure is repeated until no messages can be added to the packet. All
ties are broken arbitrarily. This algorithm by choosing to help the receiver
with the worst delay tries to reduce the worst case delay and by selecting the
messages that are useful for the bigger number of receivers tries to minimize
the number of receivers that will experience delay, thus reducing the median
delay.

4.3 Rate optimal algorithm

This algorithm mimics the opportunistic algorithm but makes sure that
each packet it sends is innovative for all receivers: after selecting c as in
the random opportunistic algorithm it adds more messages, one at a time,
until the packet contains for each receiver at least a message that is still not
decoded. This ensures that it is possible to find a set of coefficients that
make the packet linearly independent from what has already been received.
The messages are then multiplied by coefficients from an appropriately large
field, so that the final transmitted packet is innovative for every receiver.
The coefficients are chosen randomly. If the resulting packet is linearly
dependent on what has already been received by a receiver another set of
coefficients is drawn. This procedure is repeated until the packet is linearly
independent.
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4.4 Cost driven algorithm

The cost driven algorithm is neither rate nor decoding delay optimal, but
as we will see it has a median delay that is better than all other proposed
algorithms. It works by first randomly selecting a set of messages that
build a packet instantly decodable by all the receivers. It adds then more
messages if adding them will create a packet that generate delay on less
receivers. For instance assume that R1 has received message m1, R2 has
received m2 and R3 has received m1 and m2. The algorithm could select
the packet p2 = ((110),m1 + m2) in the first phase, since it is instantly
decodable by all receivers. This packet is not innovative for R3 but the
algorithm does not add m3 because a packet p2 = ((111),m1 + m2 + m3)
would generate a delay on two receivers, which is worse than p1. If however
there would be two other receivers R4 and R5 that are in the same situation
as R3 the algorithm would send p2 because in this case the overall delay
would go from 3 to 2. The complexity of this algorithm is less than the
one of an exhaustive search of the packet with the lowest delay because the
initial instantly decodable packet is chosen at random and the successive
messages are visited in a random order.

4.5 Empirical performance evaluation

In this section we discuss the performance of the algorithms presented pre-
viously as a function of M , N and p. Our graphs show the median delay Dm

across all receivers. More specifically, to generate each graph, we run our
algorithms many times (depending on the experiment from 10 to 30 runs).
The outcome of each run is the median of the delay of the N receivers. Our
plots show the median of these medians. We do not simulate the two random
network coding algorithms; instead we use the theoretical approximations
for their performance.

4.5.1 Linearity of delay as a function of M

Figure 4.1 and 4.2 show the performance of a selection of algorithms. The
different lines show, in Figure 4.1 the performance with different values of
N when p = 0.5, and in Figure 4.2 the performance with different values
of p when N = 100. The same behavior is present with other values of
N < 100 and p > 0.1 not illustrated in the graphs. The delay of the
two random network coding algorithms is not illustrated but, for fixed p
and N , it is approximately Dm(M) = M − 1 for the standard version and
Dm(M) = pM − 1 for the systematic version. The plots clearly show that
the delay of the algorithms is linear in the number of messages. The solid
line indicates a least squares approximation of data. Most points are very
close to this approximation. These experiments suggest that, for the selected
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Figure 4.1: Delay as a function of M (p = 0.5). The lines are the
least squares linear approximations, the crosses are the actual data

points. The plots show the function for N = 10, 30, 50, 70, 90
(higher N is the line with steeper slope)
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Figure 4.3: Median delay with N = 10 (gray area is the 95%
confidence interval, M = 100)

algorithms, there is a fixed per-message delay independent on the number
of messages. The fact that the number of message don’t affect the relative
performance of the different algorithms may imply that what is the optimal
algorithm depends only on p and N .

4.5.2 Delay as a function of p

Figures 4.3, 4.4 and 4.5 show the performance of some of the proposed
algorithms as a function of the probability of erasure p. We can see that all
algorithms, except the standard random network coding, have a delay that
tends to zero when the probability of erasure tends to zero. The performance
of the standard random network coding is constant and the performance of
the systematic version is linear. Surprisingly for the random opportunistic
algorithm the delay is not always increasing.

When the number of receivers is small (Figure 4.3) the performance of
both rate optimal and random opportunistic algorithms is better than the
performance of the systematic random network coding algorithm. The best
algorithm is the random opportunistic algorithm. This indicates that when
the number of receivers is small it appears it is better to send non-innovative
packets that are instantly decodable than ensuring rate optimality.

When the number of receivers increases (Figure 4.4) the performance of
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the random opportunistic algorithm becomes worse than the performance
of the systematic random network coding algorithm. The best algorithm
in this case is the rate optimal one. Sending non innovative packets seems
to generate delay on too many receivers, so it’s better to send rate optimal
packets. It is interesting to see that around p = 0.2 there is a change in
the slope of the performance of the random opportunistic algorithm. The
simple repetition algorithm shows two rapid changes in slope before p = 0.1.
Such behaviors are even more apparent in the next plot.

For N = 1000 (Figure 4.5) the performance of the rate optimal algorithm
and the systematic random network coding are indistinguishable, the rate
optimal algorithm sends linear combinations that are not decodable by most
of the receivers, exactly like the other algorithm. When p is small the delay
of the simple decoding delay optimal algorithm increases rapidly and then
has an almost a constant value, such behavior is repeated some times with
decreasing intensity. The random opportunistic algorithm has a delay that
is no more always increasing: when p ∈ [0.1; 0.15] it is decreasing.

The peculiar form of the performance of the simple decoding delay op-
timal algorithm is probably due to to the fact that when the number of
receivers is large the algorithm is sending in the second round (or in the
successive ones) all the messages because it is very likely that at least one
receiver has not received one of them. Each receiver is waiting for some
messages (on average Mp in the second round) therefore it receives many
useless messages, being p still quite small.

The shape of the random opportunistic algorithm performance is proba-
bly explained by similar reasons. From our observations we discovered that
most of the packets containing more than one message are sent during the
last rounds. Depending on p and N there can be more or less receivers in
these rounds. When p = 0.1 and N = 1000 conditions are such that there
are so few opportunities of linear encoding that the algorithm performs sim-
ilarly to the simple version. It would be interesting to further study the
inner working of the algorithm and precisely understand what happens.

4.5.3 Delay as a function of N

Figures 4.6, 4.7 and 4.8 show the performance of a selection of algorithms
as a function of N . The different plots show the delay at some values of
p. The performance of the random network coding algorithms is constant,
they are FEC codes. The delay of all other algorithms is 0 when N = 1
and then increase with N . The random opportunistic algorithm achieves
a big improvement over the simple repetition algorithm. The shape of all
algorithms is not affected by p but the relative performance of the algorithms
changes.

The delay of the simple repetition algorithm is already large at N = 2,
this is explained by the fact that, even with two receivers, in each round
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many messages are useless for one of the receivers. The performance of
the rate optimal and the random opportunistic algorithm are zero even for
R > 2. If few packets are erased and there are few receivers it is easy to find
innovative and instantly decodable packets. Both algorithms in this case
send the same packets. As soon as the number of receivers increases the
rate optimal one cannot send instantly decodable packets anymore, it then
sends different packets from the other and their performance diverges.

When the number of receivers is large all algorithms reach an asymptote:
since it’s very likely that at least one sender has not received each of the
messages decoding delay optimal algorithms often send all of them for many
rounds. The number of rounds that a node has to listen doesn’t depend
on the number of receivers but on the probability of erasure. Therefore the
overall performance is no more determined by the number of receivers. The
opportunistic algorithm has a better performance because it generates less
delay in the final phase where it is possible to find messages that can be
linearly encoded. The rate optimal algorithm behaves like the systematic
random network coding one because when the number of receivers is large
it is forced to send packets that cannot be decoded until a receiver collects
M of them.

In Figure 4.6 we see when p is small that the best algorithm is always
the rate optimal one. In Figure 4.7 we see that with a higher probability of
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erasure when N is small it is better to use the opportunistic algorithm. Only
when N > 20 the rate optimal is better. We can notice that the asymptote
for the opportunistic algorithm is better than the random network coding
when p is small, but as the erasure probability increases it is worse.

Our simulations show that as N grows, the proposed feedback algorithms
are not the best choice: although the rate optimal performs the best, the
complexity of keeping track of the state of the receivers is too high. System-
atic network coding should be preferred since it performs comparably and
does not use feedback. On the contrary, for small values of N , our proposed
feedback algorithms constitute a viable solution.

4.5.4 Using an heuristic in the simple random ARQ

In this paragraph we look at how the performance of the simple repetition
algorithm changes if we use a more sophisticated criterion to choose which
message to send in each packet. We compare here the performance of our
simple repetition algorithm with the performance of an algorithm that al-
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Figure 4.10: Median delay with N = 100 (gray area is the 95%
confidence interval, M = 100)

ways sends the message required by more receivers. Figure 4.9 shows that
the performance of the two algorithms is comparable when the probability
of erasure is low and the number of receivers is small. In this region most
of the messages that have to be retransmitted after the first round are re-
quired by the same number of receivers thus they are sent in a random order
in both algorithms. When the number of receivers is large, there is more
benefit in sending the messages in order, but as we see in Figure 4.10 that
depicts the performance when N = 100 the difference in delay is marginal.

4.5.5 Comparison between random and HDF opportunistic algo-
rithms

The relative performance of the two proposed opportunistic algorithms can
be seen in Figure 4.11. We can notice that using a more sophisticated
heuristic helps when the probability of erasure is low. On the contrary
when the number of erasures and receivers is high the random algorithm
performs better. The explanation of this behavior could be that when the
probability of erasures is small it is possible to do a better job by choosing
carefully which receiver to help since it is quite likely we will actually get the
packet through to it. When instead the probability of erasures is high, the
packet, which may have negative effects on many receivers, is likely not to



40 Empirical analysis of heuristic algorithms

Probability of ereasure

N
um

be
r 

of
 r

ec
ei

ve
rs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10

20

30

40

50

60

70

80

90

100

Figure 4.11: Comparison between random and HDF opportunistic
algorithms: black indicates HDF is better, gray indicates random is
better (at 90% confidence), white indicates that the performance

is similar



4.5 Empirical performance evaluation 41

Probability of ereasure

N
um

be
r 

of
 r

ec
ei

ve
rs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10

20

30

40

50

60

70

80

90

100

Figure 4.12: Comparison between random opportunistic and rate
optimal algorithms: gray indicates rate optimal is better, black

indicates opportunistic is better (at 90% confidence), white
indicates that the performance is similar

get through to the receivers that has to be helped. Thus the median delay
is actually worse than when choosing messages at random. Further study of
this behavior could be interesting.

4.5.6 Comparison between random opportunistic and rate opti-
mal algorithms

As we have already shown in section 4.5.2 and 4.5.3 depending on p and N
the rate optimal or the random opportunistic algorithm have the best per-
formance. In Figure 4.12 we can see precisely where these regions are. When
the number of receivers is large rate optimal is better than opportunistic.
Apparently in that situation the delay that is generated by non innovative
packets in the opportunistic dominates the decoding delay of the systematic
random network coding algorithm towards which the rate optimal algorithm
converges. When the probability of receiving a packet and the number of re-
ceivers are low the opportunistic algorithm performs better, this is probably
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Figure 4.13: Median delay with N = 35 ( gray area around data
points is the 95% confidence interval, M = 100)

due to the fact that in such circumstances sending randomly chosen inno-
vative packets creates delay on almost all successfully receiving receivers
while with instantly decodable packets at least some receivers might not
experience delay.

4.5.7 Performance of the cost based algorithm

In this last section we analyze the performance of the cost driven algorithm.
Such algorithm is motivated by the fact that neither rate optimal nor decod-
ing delay optimal algorithms performs consistently better. This algorithm
adds messages to packets only if this doesn’t increase the overall delay gen-
erated by the packet. We can see in Figure 4.13 that such approach is
rewarding when N = 35. The same has been seen to hold as well for all
other values N < 100. This algorithm outperforms both other approaches,
thus is better than a simple combination of them.

Figure 4.14 shows that the performance of the cost driven algorithm
is better than any of the other two algorithms with varying numbers of
receivers. From the plot it is not possible to determine if the performance of
the cost driven approach is better than the one of the FEC scheme because
at p = 0.5 even the rate optimal algorithm doesn’t reach its asymptote until
N = 1000 (see Figure 4.7). The asymptotical behavior of this algorithm
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Figure 4.14: Median delay with p = 0.5 (gray area around data
points is the 95% confidence interval M = 100)

should be further studied.
In both Figures 4.14 and 4.13 we show the part of delay due to non

innovative packets for the cost driven algorithm. If such part is near zero
it means that the algorithm is almost rate optimal. We can see that when
the number of receivers increases the algorithm is operating near to rate
optimality while when the probability of erasure is high it is operating well
below rate optimality. This is consistent with our observations so far that
rate optimality is not useful for small N and high p while it is useful for high
N . This could give some insight into the behavior of the optimal algorithm.
However we should keep in mind that all three algorithms choose packets
among the ones that satisfy their criteria randomly. Therefore it could be
possible, for example, that the optimal scheme is rate optimal, but our rate
optimal algorithm is missing most of the time the best packets just because
they are rare in the set of all rate optimal packets that can be sent.





Chapter 5

Conclusions

In this report we studied the problem of broadcasting M packets to N
receivers over independent erasure channels with perfect feedback and source
coding using rate optimal transmission schemes. We presented the optimal
offline algorithm in the case of N = 3 receivers that achieves zero delay.
In contrast, we showed that for N = 4, there exists an erasure pattern
that imposes a total delay of at least M/2 to the receivers under any rate
optimal transmission scheme. Then we investigated some online algorithms,
and compared their performance to standard algorithms via simulations.
Those algorithms can achieve significant improvements in delay compared
to standard FEC codes. We found that the best performance among the
collection of algorithms presented is achieved by a schema that is neither
rate optimal nor decoding delay optimal.

The main theoretical questions that are still open are finding the opti-
mal offline algorithm for the general case of N receivers (or proving that this
problem is NP-hard). Other interesting challenges include the design and
the analysis of more sophisticated online algorithms, and further compari-
son of rate optimal with non-rate optimal transmission schemes in order to
understand the interplay between delay due to non-innovative packets and
decoding delay. An interesting point would be to analyze the performance
of the cost driven algorithm presented in this report when the number of
receivers is large. It could be as well interesting to analyze the structure of
the broadcast schedules generated by the algorithms, to better understand
the performance results.

In this report the performance is optimized to have high rates. The al-
gorithms presented cannot be used to do real time streaming of information
because no care is taken of the order the messages are delivered. The first
part of a message could be delivered as last on some receivers. Many ap-
plications don’t require such a constraint: in many cases the information
cannot be used until all messages are available to the receivers therefore the
order in which they are sent is irrelevant. It could be however interesting to
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analyze algorithms that optimize some delay metric that embeds the concept
of order of delivery.



Appendix A

Incremental decoding of linear
combinations of messages

In this section we show some results that prove that solving incrementally
a system of equations given by the incoming packets with the standard
Gauss-Jordan elimination method decodes messages as soon as possible and
the overall worst case complexity is not worse than solving the system with
the same method but waiting until M packets are received.

Definition A.0.1. Let p(t) the packet received at time t, let pB(t) = {b1, . . . ,
bm} the messages linearly combined in p(t) and pc(t) = c1, . . . , cm the cor-
responding coefficients. Define D(0) a 0× 0 matrix, and D(t+1) with t > 0
the matrix created by the following algorithm where bD(0, ·) : ∅ → ∅ and
bD(t, ·) is a mapping from the set of columns of D(t) to

⋃t−1
t=1 pB(t):

1. D = D(t)

2. Bnew=
⋃t−1

t=1 pB(t)− pB(t)

3. Augment the matrix D with |Bnew| empty columns

4. Define b(i) such that b(i) = b(t, i) if column i existed in D(t); otherwise
set b(i) = b with b ∈ Bnew such that if b(u) = b(v)⇒ u = v.

5. Append to the matrix D a new empty line k

6. Set the Dk,i = cj for all bD(i) = bj

7. ∀0 ≤ i < k Dk,· = Dk,· −Dk,i ·Di,·

8. If {j|Dk,j 6= 0} = ∅, delete row Dk,· and stop algorithm

9. Find p = min{j|Dk,j 6= 0}, swap column D·,p with D·,k and bD(p) with
bD(k)

10. Dk,· = 1/Dk,k ·Dk,·
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11. ∀0 ≤ i < k Di,· = Di,· −Di,k ·Di,·

12. D(t + 1) = D, bD(t + 1, ·) = bD(·)
Lemma A.0.1. Matrix D(t) = (I|R(t))

Proof. Proof by induction: D(0) satisfies the conditions. Matrix D(t + 1)
is constructed by adding trailing columns (that don’t change the prop-
erty) and by adding a row. At step 7 we make sure that in the first
rows(D(t+1))−1 columns the new line contains only zeros (using the stan-
dard gaussian elimination procedure); at steps 8 and 9 we make sure that
D(t + 1)rows(t+1),rows(t+1) = 1, and at step 9 we make sure that the column
rows(D(t+1)) is of the correct shape (using Gauss-Jordan elimination).

Lemma A.0.2. The space generated by the lines of matrix D(t) is the same
as the one generated by the coefficients of the packets received up to time t−1

Proof. Lines of the matrix D(t) are created by linearly combining coefficients
of the packets. By construction the dimension of the space is preserved
(because the line are either multiplied by a non zero term (step 10) or
substituted with a linear combination of itself and another line (steps 7 and
11)).

Lemma A.0.3. No message in set {b|∃i > rows(D(t)), b(i, t) = b} can be
decoded with packets p(0), . . . p(t− 1)

Proof. Let assume a message b such that b(i, t) = b with i > rows(D(t)) can
be decoded. This would mean that ei ∈ span(PC) = span(L) and therefore
that would mean that ei could be expressed as:

ei =
∑

lu∈L

au·lu ⇔ ei =
∑

lu∈L

cu(eu+(01×m|Ru,·) =
∑

lu∈L

cueu+
∑

lu∈L

cu(01×m|Ru,·)

The first part of the expression forces all cu to be 0 and the second part
forces at least one cu to be different than 0 that is a contradiction so no such
message can be decode.

Theorem A.0.1. A message b can be decoded using packets P = p(0), . . . ,
p(t) if and only if there exists a line j of matrix D(t + 1) such that D(t +
1)j,k = 1, b(t + 1, k) = b and D(t + 1)j,l = 0∀l 6= k.

Proof. Let PC = pC(0) . . . pC(t) the coefficients of the packets. We know
that a message b can be decoded using P if and only if e ∈ span(PC) with
e the unit vector associated to b. If there is a row lu = ev then it’s trivial
to see that ev is in the span of L and therefore that that message b(u, t + 1)
can be decoded (by using the standard gauss-jordan method).
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To show the converse we know from the previous lemma that D(t + 1)
can be decomposed in (I|R). Let m = rows(D(t+1)) and n = cols(D(t+1)).
Let i such that b(t + 1, i) = b. The unit vector corresponding to b expressed
with the notation used in matrix D(t + 1) is ei.

We know from the previous lemma that i ≤ m. We will show that li = ei

We know that ei ∈ span(L) therefore:

ei =
∑

lu∈L

au · lu ⇒ li =
∑

lu∈L−{li}
culu + d · ei

(lemma1) ⇒ ei + (01×m|Ru,·) =
∑

lu∈L−{li}
cu(eu + (01×m|Ru,·)) + d · ei

⇒ ei =
∑

lu∈L−{li}
cueu + d · ei

⇒ cu = 0∀u
⇒ Ru,· =

∑

lu∈L−{li}
cuRu,· = 0

Theorem A.0.2. If the received packets are always innovative the number
of arithmetic operations required to build the matrix D(t+1) is O(tM) with
M the number of existing messages.

Proof. The number of rows of matrix D(t) is t− 1. The number of columns
of the matrix is upper bound by M. At step 7 we do O(tM) operations, at
step 10 we do O(M − t) operations, at step 11 we do O(tM) operations.
The overall complexity is therefore O(tM).

Corollary A.0.1. The overall complexity of decoding in terms of arithmetic
operations is O(M3)
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