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Abstract—We consider the problem of minimizing delay when
broadcasting over erasure channels with feedback. A sender
wishes to communicate the same set ofµ messages to several
receivers over separate erasure channels. The sender can broad-
cast a single message or a combination (encoding) of messages
at each timestep. Receivers provide feedback as to whether the
transmission was received. If at some time step a receiver cannot
identify a new message, delay is incurred. Our notion of delay is
motivated by real-time applications that request progressively
refined input, such as the successive refinement of an image
encoded using multiple description coding.

Our setup is novel because it combines coding techniques with
feedback information to the end of minimizing delay. It allows
Θ(µ) benefits as compared to previous approaches for offline
algorithms, while feedback allows online algorithms to achieve
smaller delay than online algorithms without feedback. Ourmain
complexity results are that the offline minimization problem
is NP -hard when the sender only schedules single messages
and that the general problem remains NP -hard even when
coding is allowed. However we show that coding does offer delay
and complexity gains over scheduling. We also discuss online
heuristics and evaluate their performance through simulations.

I. I NTRODUCTION

Current and emerging applications, such as satellite imag-
ing, roadside to vehicle communication, internet tv, wireless
downlink broadcasting, require content to be downloaded
quickly and reliably from a host over possibly unknown
channels. In practical networks, transmissions are subject to
errors: packets get dropped due to congested links, wireless
fading and interference, expired timestamps, etc. Such losses
are perceived as packet erasures at higher layers, and are often
modeled using independent erasure channels.

To cope with unknown channels, feedback information is
often available at the broadcasting source. Thus the source,
when deciding what to transmit next, knows which receivers
successfully received each of its past transmissions. Feedback
can be efficiently employed in a wireless environment: the
source might acquire such information by taking advantage
of the symmetry of wireless links, or by collecting acknowl-
edgment packets explicitly using specifically designed control
traffic [7], or implicitly, by overhearing transmissions from the
receiver nodes [11].

In this paper, we consider the problem of combining coding
techniques and feedback information over broadcasting chan-
nels to offer reliable content delivery under delay guarantees.
Our notion of delay is motivated from real-time applications
with progressively refined input. Such a paradigm is provided
by multiple description coding that we adopt as our illustrating
example in the following; however, our notion of delay is
relevant to a much more general class of applications.

Multiple description is a well studied data compression
technique which allows for robust and graceful recovery in
the presence of unknown channel conditions. The theoretical
problem was introduced in the 80’s (e.g., [9]), but the research
interest in the field was significantly invigorated during the last
few years, due to the numerous identified network applications,
such as image and video delivery (e.g., [3]). The main idea
is to encode a file, for example an image, using a number
µ of equally important descriptions. Each description is sent
separately to the receiver, which, depending on the channel
conditions, may receive only some of them. The descriptions
are such that if a receiver receivesany single one, it can
reconstruct a coarse version of the image; more received
descriptions allow for a more accurate reconstruction. Notice
that only thenumberof different received descriptions matters
for the reconstruction accuracy and not the order of reception.

Consider now an application that requires fast delivery of
images over a wireless network, for example from a road-
basestation of a transportation network to passing vehicles.
Assume that the image is encoded using multiple description,
and thus the basestation hasµ blocks to deliver. When com-
municating towards a single receiver, simple sequential trans-
mission of the blocks suffices. The problem becomes much
more challenging when the image needs to be broadcasted
to a number of receivers, each of which receives data over
its own erasure channel. The base station may combine the
feedback information with aschedulingalgorithm to decide
which image block to broadcast next. In this work, we propose
instead to use acodingalgorithm that transmits encodings of
the image blocks. Our proposed coding is additional to the
multiple description data compression: it decides which and
how many image blocks it will combine together, and falls in
the area of network coding, as its main purpose is to better
share the network resources among the contending receivers.
Also, our ideas apply to more general settings such as single-
hop networks with many sources.

Every time receiverrj receives successfully, it wants to
learn some missing piece of information, namelyany image
block it does not know yet. This motivates us to increment
the delaydj of rj by one every timerj successfully receives
either (i) an image block it already knows, or (ii) an encoding
of image blocks which, when combined withrj ’s successful
receptions so far, does not allowrj to immediately learn at
least one unknown image block. This definition allows us to
disengage delay from the erasure frequency as delay may only
occur at successful receptions. It also allows us to capturetwo
causes of delay: delay due to useless received packets, namely



packets that bring duplicate information to their receiver, and
delay due to packets that, although useful, do not allow
their receiver to decode some unknown block at the time of
their reception. Finally, our definition of delay is the simplest
instantiation possible, as it does not take into account any
ordering: we thus hope that a good understanding of this
problem can serve as a first step towards more combinatorially
demanding delay definitions.

The main questions we consider in this paper are (i) whether
coding offers delay gains, and (ii) how to design coding
schemes that minimize average and maximum delay, and what
is the complexity of this task. We focus on the case where
all receivers request the same content because understanding
this simple model offers a first step towards variations, where
receivers may demand different subsets of messages. It is
worth noting that the popular solution of employing rate-less
erasure correcting codes such as LT [13] or Raptor codes [16]
for reliable broadcasting over erasure channels, yields very
large delays (see I-A).

Our contributions include the following. We first show that
minimizing average and maximum offline delay when the
source uses scheduling isNP -hard. We then examine the com-
plexity of the problem when coding is allowed and show that,
although specific classes of erasure instances become trivial,
the general problem remainsNP -hard. However, we exhibit
classes of erasure instances where coding offers significant
gains in delay. We then discuss heuristic online algorithms
for the case of i.i.d. erasures. We evaluate their performance
through simulations and show that use of feedback and coding
outperforms in terms of delay both scheduling, and Forward
Error Correction (FEC) schemes that do not use feedback.

The remaining of the paper is organized as follows. Sec-
tion II introduces our model. Sections III and IV study the
complexity of offline scheduling and coding, and benefits from
coding. Section V discusses online algorithms. Due to space
limitations, detailed proofs of all theorems and propositions in
these sections appear in [19]. Section VI concludes.

A. Related Work

A significant body of work has investigated the problem of
scheduling user requests over a broadcast medium to maximize
the per-user received rate and minimize the response time.
Users typically arrive at different times, and ask for different
content. No coding is employed and no errors occur. The
difficulty of the problem, which was recently shown to beNP -
hard [6], arises from having to share the common medium over
the contending requests. Without erasures, our setting is an
easy instance of this problem: when all users request thesame
data items inany order, even if they arrive at different times,
a periodic (circular) transmission of the data items suffices.

In the presence of erasures, uncoded transmissions lead to
repetitive reception and cannot achieve rates and thus delay
close to optimal. With coding, delay and rate may become
conflicting requirements. Rate-less codes for example need
to encode at the source acrossµ blocks to operate close to
capacity. A receiver must collectΘ(µ) coded packets before

it can decode, which incurs delayΘ(µ). Indeed, when erasures
occur, satisfying requests even for the same content becomes
challenging [8]. In [17] use of MDS codes is proposed, but
their performance is inferior to Raptor codes both in terms of
complexity and adaptability to unknown channel conditions.

Our work can also be viewed as an instantiation of network
coding with feedback. In [11], the goal is to optimize the
achievable rate, when each received packet is either useless or
can be immediately decoded by the destination. Such schemes,
although simple to implement, do not offer rate or delay
guarantees. Another line of work seeks to minimize the queue
size at the sender (e.g., [18]). Also, [14] examines schemes
that minimize mean completion time for broadcasting over a
generalized variant of half duplex erasure channels. The last
two performance metrics are quite different from delay.

A related broadcasting scenario, called Index Coding, was
introduced in [4]. In the more general setting of [2], it is
assumed that by timet each receiver knows some subset of
the µ blocks (its side information), no erasures occur after
time t, and each receiver wants exactly one of the blocks it
is still missing. The goal is to find the minimum length of
the codeword whose transmission will allow all receivers to
simultaneously recover their missing blocks. In our setting,
the assumptions above do not hold. Further, optimizing for
the objective in [2] does not necessarily minimize ours.

In [10], solving Index Coding is viewed as solving a
sequence of specific instances of the problem of network
coding where the receivers place demands for specific sets
of messages. In the full version of our paper, we show how
minimizing delay is equivalent to solving a sequence ofspe-
cific instances of a different problem, namely network coding
with non-uniform demands (NUD). We exhibit a specific NUD
instance that is hard (the one corresponding to answering if
the delay has its minimum possible value), hence our results
provide an alternative proof for the complexity results in [5].

Finally, our paper builds on a preliminary work [12], where
we introduced the problem.

II. T HE MODEL

Consider a source that wants to conveyµ messages toρ
receivers using broadcast transmissions. Time is slotted.At the
beginning of each time slott ≥ 1, the source transmits packet
p(t). The source uses aschedulingscheme ifp(t) consists of
one uncoded message for allt, while it uses acodingscheme
if p(t) may be an encoding (combination) of the messages.
Receiverrj receives the source transmissions over its erasure
channel. We denote byKt

j ∈ {0, 1} the realization ofrj ’s
channel at timet with Kt

j = 1 iff rj receivesp(t). In the worst
case (offline)model these realizations have given values, while
in a probabilistic(online) setting they are random variables.

For all t ≥ 0, receiverrj informs the source ofKt
j . We

assume perfect feedback channels and that the source receives
Kt

j before the end of time slott. Thus the source can use this
information to generate the next packet. We assume that during
time slot t, the receivers can receivep(t) and decode it using
previously received packets. A receiver who has decoded all



µ messages is no longer interested in the source transmissions
which continue until all receivers have decoded all messages.

We can think of theµ source messages as defining aµ-
dimensional space over a finite fieldFq, where each mes-
sage corresponds to one of the orthonormal basis vectors
{e1, . . . , eµ}. In this work we are interested in linear schemes,
wherep(t) has the form(c, x) with c ∈ F

µ
q andx =

∑
j cjej ;

the choice of the coefficient vectorc determinesx, so we leave
x implied in what follows. Operations over a finite fieldFq

of size sayq = 2ℓ in practice means that we divide the binary
packets the source produces into contiguous sets ofℓ bits, and
treat each such set as a symbol ofFq. Linear combining of
the packets occurs symbol-wise.

Let Πt
j be the subspace collected byrj at the endof

time slot t and Et
j the set of vectorseℓ ∈ Πt

j . We say
that a received vector (packet) bringsinnovative information
to rj if it increases dim(Πj) by one. Schemes where every
successfully received packet brings innovative information to
its receiver are calledrate-optimal. In such schemes, ifrj has
receivedℓ packets, it has anℓ-dimensional subspaceΠj of the
µ-dimensional space. Forℓ = µ, rj can successfully decode
all source messages. (for more properties see [19], [12]).

Definition 1: The delaydT
j experienced byrj under trans-

mission schemeT is the number of packets that, although suc-
cessfully received, did not allowrj to instantly decode a new
message.1 In symbols,dT

j , 1+
∑

t:|Et
j
|<µ 1(Et

j = Et−1

j )·Kt
j,

where1(·) is the indicator function.
Let DT

a , DT
w denote the average, worst case delay under

T respectively. Our goal is to computeminT DT
a , minT DT

w

and find the possibly different (see [12]) schemes that achieve
them. Observe that if a scheme achieves the minimum delay
of one for a given broadcasting instance, then the scheme is
rate-optimal. On the other hand, any non rate-optimal scheme
incurs average and maximum delay strictly larger than one.

Since the delay of any online scheme is lower bounded by
the delay of the optimal offline scheme, we first investigate
the offline model in Sections III and IV.2 The offline problem
has 4 inputs:µ; ρ; a timeτ by which all receivers must have
decoded all messages; and aτ × ρ symbolic matrixP with
entries from{√,x} such thatP (t, j) =

√
iff rj receivedp(t).

3 A broadcasting scheme for the sourcecompletesan offline
instance(µ, ρ, τ, P ) if by time τ all receivers have decoded all
messages. For example, ifti is the first slot by whichri hasµ

successful receptions, andτ ≥ max1≤i≤ρ ti, any rate-optimal
scheme completes the instance (regardless of the delay).

III. M INIMIZING SCHEDULING DELAY IS NP -HARD

Given an offline broadcasting instance(µ, ρ, τ, P ), we want
to minimize the average (maximum) delay under any schedul-
ing scheme that completes the instance. A priori this appears to

1The +1 is introduced for technical reasons and may be interpreted as setup
time: e.g.,t = 0 is used by the source to identify the number of receiversρ.

2Besides serving as benchmarks for online performance, offline problems
can be particularly interesting on their own (e.g., Index Coding).

3We useP (t, j) for the offine model to distinguish fromKt
j

used online.

be an easier problem than the one studied in [6] since our no-
tion of delay is relaxed: all receivers need all messages instead
of specific subsets of messages, and the order of reception does
not matter. The decision version of our minimization problem
has an extra integer inputd ≥ 1, and answers “yes”iff there
is a schedulingscheme that completes(µ, ρ, τ, P ) with total
(maximum) delay at mostd 4 . An algorithm that solves the
minimization problem must answer the decision problem for
every value ofd, including its minimum value which is one
for both average and maximum delay. Thus showing that it
is hard to decide if the average delay is one proves that both
minimization problems are NP-hard. This is the main result
of this section and it is summarized in the following theorem.

Theorem 1:Minimizing average and maximum offline de-
lay under scheduling schemes isNP -hard.

In the rest of this section we sketch the proof of Theorem 1.
We will reduce 3SAT to average delay (henceforth referred to
simply as delay) of one.

Given a formulaφ in CNF onn variablesx1, . . . , xn, andm

clausesc1, . . . , cm, where each clause consists of disjunctions
of exactly 3 literals, we want to decide if there is an assignment
of truth values to the variables that satisfies all clauses.

We will construct an offline broadcasting instanceB(φ) =
(µ, ρ, τ, P (φ)) such thatφ is satisfiableiff there is a scheduling
scheme that completesB(φ) with delay one. In our instance,
the source hasµ = 2n messages, there areρ = n + 2m

receivers, andτ = 4n + 5m slots. In our construction each
receiver has exactlyµ = 2n successful receptions by timeτ .
This suffices to decide if a delay-one scheme for our instance
exists: any such scheme must be rate-optimal (see Section II),
thus must deliver allµ messages afterµ successful receptions.

In more detail, for every variablexi, 1 ≤ i ≤ n we introduce
2 messages,ei, ei, and one receiverDi (we will discuss the
role of Di after the construction ofP (φ) is complete). Also,
two receivers,Cj

1
andC

j
2

are introduced for every clausecj ,
1 ≤ j ≤ m. ThusP (φ) hasρ = n + 2m columns.

We now discuss the number of rowsτ in P (φ). For every
variablexi, we introduce 4 consecutive time slots, which we
call thevariable periodβi; βi starts at time4i − 3, and ends
at time 4i. Following then-th variable period, we introduce
m consecutiveclauseperiods: thej-th clause period, denoted
by γj, consists of 5 time slots, starts at time4n+ 5j − 4, and
ends at time4n + 5j. ThusP (φ) hasτ = 4n + 5m rows.

To complete our construction, we must assign values to the
τ ·ρ entries ofP (φ). We will do this sequentially in time, i.e.,
by first considering thevariable and then theclauseperiods.

Time C
j
1

C
j
2

4i − 3
√

x
4i − 2 x x
4i − 1 x

√

4i x x

Time C
j
1

C
j
2

4i − 3
√

x
4i − 2 x x
4i − 1 x x

4i x
√

Time C
j
1

C
j
2

4i − 3
√ √

4i − 2
√ √

4i − 1 x x
4i x x

TABLE I
RECEPTIONS OFC

j
1

, C
j
2

DURING βi : AS ON THE LEFT, IF CLAUSE cj

CONTAINS xi ; MIDDLE , IF cj CONTAINS xi ; RIGHT, OTHERWISE.

4For µ independent ofρ, minimizing total or average delay are equivalent.



Time D1 . . . Di . . . Dn

4i − 3
√

. . . x . . .
√

4i − 2
√

. . . x . . .
√

4i − 1 x . . .
√

. . . x
4i x . . .

√
. . . x

Time slot C
j
1

C
j
2

4n + 5j − 4
√ √

4n + 5j − 3 x
√

4n + 5j − 2 x
√

4n + 5j − 1
√

x
4n + 5j

√
x

TABLE II
LEFT: D1, . . . , Dn DURING βi . RIGHT: C

j
1

, C
j
2

DURING γj .

During variable periodβi, for all 1 ≤ j ≤ m, receivers
C

j
1
, C

j
2

corresponding to clausecj receive as shown in Table I
depending on whetherxi, xi or none of them appears incj .
Also, duringβi, receiversDℓ for 1 ≤ ℓ ≤ n, receive as in
Table II: for ℓ 6= i, Dℓ receives during the first two time slots
of βi, while only Di receives during the last two time slots.

During clause periodγj , receiversCj
1
, C

j
2

corresponding
to clausecj receive as shown in the right Table II. All other
receivers experience erasures duringγj .

The above completes our construction. It is easy to check
that the reduction can be carried out by a deterministic Turing
machine in logarithmic space, and that every receiver has
exactly µ successful receptions. So a priori there could be
a scheduling schemeT ′

S completingB(φ) with delay one.
ReceiversDi ensure the following property of all suchT ′

S.
Proposition 1: For all βi, any T ′

S that satisfiesB(φ) with
delay one, sends twonewmessages in the first two slots, and
resends these messages in some order in the next two slots.
In effect, this flexibility in the scheduling of the messages
during the last two slots of eachβi is our choice gadget. Our
consistency gadget is that duringβi, C

j
2

receives a different
message fromCℓ

2
if xi appears incj andxi in cℓ. Our clause

constraint gadget is the simultaneous reception of the two
receivers corresponding tocj during the first slot ofγj .

We now move to showing thatφ is satisfiableiff B(φ)
admits delay one. Before, we introduce two useful schedulings.
Scheduling 1, 2 for variable periodβi: the ordered sequence
of messages{ei, ei, ei, ei}, {ei, ei, ei, ei}, respectively.

Proposition 2: If φ is satisfiable, there is a scheduling
schemeTS that satisfiesB(φ) with delay one.

Conversely, letT ′
S be any scheduling scheme that satisfies

B(φ) with delay one. W.l.o.g., assume thatT ′
S transmits

{exi
, eyi

} during the first two slots ofβi. By Proposition 1,
these messages will not be rescheduled before time4n, so for
the sake of clarity, we may relabel them asei, ei respectively.
We define the following truth assignment. For1 ≤ i ≤ n, if
T ′

S applied Scheduling 1 forβi, setxi to true, else ifT ′
S used

Scheduling 2 forβi, setxi to false. By Proposition 1, anyT ′
S

indeed applied one of these two schedulings duringβi. The
following show that the above truth assignment satisfiesφ.

Proposition 3: Let cj = (ℓi ∨ ℓa ∨ ℓb) beanyclause. Under
anyT ′

S that satisfiesB(φ) with delay one,Cj
2

has received at
least one ofei, ea, eb by time 4n.

Corollary 1: If T ′
S is a scheduling scheme that satisfies

B(φ) with delay one thenφ is satisfiable.

IV. B ENEFITS AND L IMITS FROM CODING

We start here by attempting to understand the structural
properties of instances where offline scheduling results in

delay greater than one. We then show that coding across
messages can offer two types of benefits: (i) Reduce the
delay: we exhibit instances where coding achieves delay one,
while scheduling cannot. (ii) Reduce the complexity of solving
the problem: for example, with scheduling, it isNP -hard
to compute the delay for the erasure pattern in Section III,
while it is trivial to achieve the minimum delay of one with
coding: duringβi, sendei, ei, ei, ei, while duringβj , for clause
cj = (ℓi∨ℓa∨ℓb), sendei +ei, then whatever is missing from
C

j
2
, and finallyea, eb. The main purpose of this section is to

examine whether and how much coding can help.
We use the following notation:Bt denotes the set of

messages the source has transmitted up to timet, Bt the
remaining messages. Similarly,Et

j denotes the set of messages

from Bt received byrj , while E
t

j = Bt\Et
j for all rj .

For the case of one receiver, trivially, scheduling achieves
delay one. For two receivers, a simple algorithm ensures delay
one: if at timet (i) both r1 andr2 receive, transmit a message
from Bt (ii) only rj receives, ifĒt

j 6= ∅ transmit a message

from E
t

j , else a message fromBt. This scheme ensures that

at eacht eitherE
t

1
= ∅ or E

t

2
= ∅, andBt = ∅ only when at

least one of the two receivers has received all messages.
For three receivers, offline scheduling can result in worst

case delayO(µ). Indeed, delay is introduced when the trans-
mission scheme cannot be rate optimal. For the pattern in
Table III, where each line is repeatedµ

2
times, rate optimality

for r3 implies that att = µ + 1, E
t

1
∩ E

t

2
= ∅ (r3 is

necessary to ensureE
t

1 ∩ E
t

2 = ∅). Then the transmissions
at t = µ + 1, . . . , 3µ

2
incur sum delayµ

2
for r1 andr2. Thus:

time-slots r1 r2 r3

1, . . . ,
µ

2

√
x

√
µ

2
+ 1, . . . , µ x

√ √

µ + 1, . . . ,
3µ

2

√ √
x

time-slots r1 r2 r3 r4

1, . . . ,
µ

2

√
x

√
x

µ

2
+ 1, . . . , µ x

√ √
x

µ + 1, . . . ,
3µ

2

√ √
x

√

TABLE III
LEFT: SCHEDULING DELAYSO(µ), CODING1; RIGHT: CODING DELAY O(µ).

Proposition 4: If at time t there are receiversri andrj such
thatE

t

i∩E
t

j = ∅, and after timet, for the nextD timeslots with

D , min{|Et

i|, |Et

j |}, both ri and rj succesfully receive,
then offline scheduling results in delayO(D).

Use of coding allows to make all source transmissions rate
optimal (e.g., for the left pattern in Table III, it suffices to
transmit µ

2
messages fromE

t

1 +E
t

2 at t = µ+1, . . . , 3µ
2

), but
delay is now introduced, if a receiver cannot decode a received
linear combination, as shows the right pattern in Table III (see
also [12]). It is easy to see that, att = µ + 1, E

t

1
∩ E

t

2
= ∅,

and additionally,E
t

1
⊂ E

t

4
, E

t

2
⊂ E

t

4
. To be rate optimal for

r1 andr2 the source must transmit fromE
t

1
+ E

t

2
. However,

these transmissions cannot be decoded byr4. Thus:
Proposition 5: If at time t there are receiversri, rj andrk

with E
t

i ∩ E
t

j = ∅, E
t

i ⊂ E
t

k, E
t

j ⊂ E
t

k, and aftert, for the

nextD timeslots withD , min{|Et

i|, |Et

j |}, bothrj andrk

successfully receive, then offline coding incurs delayO(D).



Clearly, coding achieves delay one for a larger set of erasure
patterns than scheduling. Some such patterns are given below.

Proposition 6: Coding achieves delay one when each trans-
mission is: 1. Successfully received by at most two receivers
(high erasure probability scenario). 2. Not received by at most
one receiver (low erasure probability scenario).

Given that there are instances that become easier with
coding, the next question is, whether the general problem,
when we are allowed to use coding, becomes polynomial time,
or remainsNP -hard. Note that the problem of maximizing the
throughput when multicasting over graphs becomes polyno-
mial time if coding at intermediate network nodes is allowed
[15], while it is NP -hard otherwise. However the following
results show that this not the case in our problem. The proof
of Theorem 2 builds on the ideas in the proof of Theorem 1.

Theorem 2:Minimizing average or maximum offline delay
when the source uses (linear or nonlinear) coding isNP -hard.

Proposition 7: UnlessP = NP , no (2− ǫ)-factor approxi-
mation algorithm exists for maximum offline delay andǫ > 0
when the source uses (linear or nonlinear) coding.

V. ONLINE ALGORITHMS

We start by discussing the competitive ratio of a natural
class of online algorithms for minimizing average and maxi-
mum delay in the case of arbitrary erasures. We then suggest
an online heuristic that improves significantly on the average
delay of the best heuristic from [12] for i.i.d. erasures.

A systematic rate-optimal online algorithm first transmits
all µ messages once uncoded, then sends combinations of all
messages. Such schemes have smaller delay than their non-
systematic variants where linear combinations of all messages
are always sent. However they perform poorly even in the
presence of a deterministic adversary who injects arbitrary
erasures but does not observe any channel.

Proposition 8: For µ = O(ρ) and arbitrary erasures, the
competitive ratio of a systematic rate-optimal online algorithm
is µ − O(1), µ − 1 for average, maximum delay respectively.
Proposition 8 motivates us to look at algorithms that are not
necessarily rate-optimal in the online scenario. We focus on
the case where allρ channels experience i.i.d. erasures with
common constant erasure probabilityq. Our new heuristic first
sends theµ messages once uncoded. Then for allt > µ, p(t) is
created as follows. First, a set of messagesS is built by going
over every source messagee in a random order and setting
S = S ∪{e} if S ∪{e} is instantly decodable (not necessarily
innovative) for every receiver. Then, for everye 6∈ S, it updates
S = S ∪{e} if more receivers will delay upon reception ofS

than ofS∪{e}. Finally, the transmittedp(t) is a random linear
combination over the messages inS. Figure 1 compares the
performance of this algorithm (Cost driven 2) with scheduling
(always transmit the most needed message), and two heuristics
from [12] (Systematic FEC and Cost driven 1), also discussed
in [19]. Although our new heuristic is clearly suboptimal, it
can improve by even 50% the performance of systematic FEC
(a rate optimal algorithm with expected delayµq that does
not use feedback) asq, ρ (graphs below) andµ (simulations

not shown here) increase, and achieves more than 78% of
the maximum rate for each point in the graphs. Variations
aiming to weigh more cleverly the delays from useless and non
instantly decodable packets are the subject of current work.
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Fig. 1. Median delay; the gray area corresponds to confidenceinterval;
ρ = 150 on the left,q = 0.3 on the right graph;µ = 100 for both graphs

VI. CONCLUSIONS

We consider the problem of minimizing average and maxi-
mum delay when broadcasting with erasures. We show that
the general offline problem isNP -hard under scheduling
schemes, and remainsNP -hard even under (linear or non-
linear) coding schemes. However we demonstrate that coding
offers delay and complexity gains offline, and that feedback
information allows online algorithms specifically designed for
delay-sensitive applications to outperform both scheduling and
standard FEC (no feedback) schemes.
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